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a b s t r a c t

This work presents results of numerical simulations along with the development of simple analytical
forms aimed at predicting diffusivity in barrier membranes with randomly dispersed flakes. Simulations
are performed using Boundary Element models of representative volume elements that account for the
barrier microstructures with high level of detail. Microstructural features such as flake aspect ratio (α)
and volume fraction (ϕ) are varied in the range of practical interest ( αϕ≤ ≤0.1 5). Numerical simulations
also address the effects of the flake orientational order. Simulation results are used to develop a new
model that predicts the elements of the diffusivity matrix as a function of flake arrangement. The basic
idea behind the proposed model is to assimilate the parameter proposed by Bharadwaj to describe flake
orientational order into the diffusivity model by Lape, which was originally developed for uniformly
oriented flakes. The model predictions are shown to be consistent with theoretical limiting behaviors and
with those of other models in the literature. The proposed model is among the few ones that accounts for
the disorder in the flake orientation, which is found to have a noticeable impact on diffusivity in the
direction parallel to the flake orientation.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The control of barrier properties is relevant to many technol-
ogies as a key factor to guarantee product preservation or to
protect parts and objects of everyday use from the environment.
Beverage bottling, food packaging, protective coatings of diverse
nature or drug delivery devices are some of the many application
niches that require a fine control of mass transport of gas or liquid
species through the material. A useful approach to produce ma-
terials with enhanced barrier properties is the dispersion of im-
permeable elongated objects in a host matrix. The idea behind is
that the obstacles increase the path length of the penetrating
species so retarding mass transport [1]. This concept has been
implemented in polymer based materials with the inclusion of
elongated obstacles with lateral dimensions in the nanometric
scale (polymer nano-composites). For instance, it has been shown
that the incorporation of small amounts of layered silicates (clays)
or natural fibers such as cellulose into a variety of polymer ma-
trices produces a remarkable improvement in gas barrier
properties.

The prediction of barrier properties like diffusivity, D, or

permeability, P , in composite materials is of obvious interest,
particularly from the point of view of material design. In other
families of barrier materials, such as those composed by multi-
layers, overall permeability is dictated by a simple combination of
properties of the individual layers. In nanocomposites, predictions
of barrier properties are certainly more complex as there are
several structural features that come into play. For instance,
characteristics of the obstacles such as length-to-thickness ratio, α,
volume fraction, ϕ, orientation and state of aggregation are ex-
pected to affect the overall transport behavior of the composite
system. Moreover, in real materials, these variables may not have
spatial homogeneity thus adding another level of complexity in
the problem description. For example, in the production of parts
by injection, extrusion or blown-molding of polymer nano-
composites, shear induced orientation of the nanoclay is un-
avoidable and it leads to fairly complex orientation patterns of the
objects when going from the skin of the part to its core [2].

Some remarkable efforts have been made in the past to un-
derstand the effect of α and ϕ of either regular or randomly placed
diffusion flakes on overall P or D. The upper bound for diffusivity is
predicted by the Voigt's parallel model, which states that for flakes
oriented parallel to the concentration gradient, diffusivity de-
creases, irrespectively of α, in direct proportion with the increase
of ϕ. Any other configuration yields lower diffusivities; in parti-
cular, models that consider flakes oriented perpendicular to the
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concentration gradient predict the minimum diffusivities. These
models idealize the penetrant trajectory as a one-dimensional
path that experiments abrupt changes in direction when it en-
counters an obstacle. Thus, tortuous paths retard the penetrant
diffusion. The barrier performance can be described in terms of the
product αϕ, a measure of the mean overall resistance to the dif-
fusion of the penetrant. Models predict two ranges of barrier
performance. In the diluted limit (αϕ ≪ 1), D scales with the in-
verse of the product αϕ; obstacles essentially behave in-
dependently of each other and the reduction in diffusivity is
mostly due to the tortuosity effect [3]. In the so-called semi-diluted
regime (αϕ close or above 1), D turns out depending on the square
inverse of αϕ [1]. As obstacles come closer to each other, the area
available for diffusion decreases, further reducing diffusivity. The
semi-diluted regime is of practical interest as in most of the ap-
plications ϕ ≈ 0.05 and α > 20, which implies αϕ > 1. Other im-
portant microstructural factors have also been considered. For
instance, Lape et al. [1] assessed the influence of flake aspect-ratio
polydispersity on the permeability for the case of flakes oriented
perpendicular to the concentration gradient. They concluded that
polydisperse flakes have superior barrier properties than mono-
disperse ones.

Flake orientation with respect to the concentration gradient i.e.
aligned or perpendicular, have a profound effect on D. Accordingly,
the dispersion of the flake orientation angles is another important
aspect to be addressed, as the increase in angle dispersion even-
tually leads to microstructures with randomly oriented flakes.
Fredrickson and Bicerano [4] demonstrated that flakes perpendi-
cular to the concentration gradient are three times more effective
in permeability reduction than those with randomly oriented ob-
stacles. Bharadwaj [5] described the dispersion in the orientation
angle (orientational order) through the introduction of the order
parameter S, derived from liquid crystals theory [6]. Bharadwaj's
model predicts that small obstacles are more sensitive to or-
ientational disorder than large ones, although that claim is limited
to the diluted limit used for the author as the base of derivation.

High performance numerical tools such as Boundary Element
(BEM) and Finite Element (FEM) Methods have taken advantage of
the continuous increases in computational power to address the
rigorous modeling of complex material microstructures. BEM can
solve the diffusion of the penetrant through intricate flake ar-
rangements with high level of detail and accuracy. At the same
time, BEM simplifies the problem data preparation and dis-
cretization, which is limited to the model boundary [7]. Results of
numerical simulations are very useful to obtain further insights on
how microstructural features such as flake size, shape and or-
ientation influence on D, beyond the information obtained from
the analysis of idealized simple microstructures. Rigorous com-
puter simulations provide a platform of data generation, compar-
able to those one would obtain from experiments with controlled
and well-defined sample geometries.

This work presents the results of a systematic 2D BEM homo-
genization analyses for the computation of the overall anisotropic
diffusivity matrix of flake-filled barrier membranes. The analyses
consider microstructures with randomly placed flakes, the size
and aspect ratios of which are within the range αϕ< <0.1 5. The
homogenization analyses address the effects of the variability of
the flake orientation angles, which are characterized via the above
referred orientational order parameter, S. Our primary objective is
to reduce the simulation results to simple and manageable ana-
lytical forms, able to quantitative predict the diffusivity reductions
in terms of α, ϕ and S. The paper is organized as follows: we start
presenting relevant details of BEM implementation and the results
of the numerical simulations. Then, we briefly review some of the
relevant analytical models used to predict diffusivity, which will
serve as a platform for our further developments. In the

subsequent section, we develop a new analytical model that pre-
dicts the overall anisotropic diffusivity matrix of the barrier ma-
terial. The last section discusses some examples that highlight the
capabilities of this new model.

2. Problem description

The analysis addresses the two-dimensional diffusion of a so-
lute through flake-filled membranes, like the ones depicted in
Fig. 1. The matrix material is homogeneous and isotropic, whereas
the flakes are of rectangular shape and they are impermeable to
the diffusing species. Dimensions of the flakes are ×a b2 with

>a b (see Fig. 2a). The membrane microstructure is described in
terms of the flake volume fraction ϕ = = ( × )

×A A/flakes membrane
n a b

L W
2 ,

where n is the number of flakes and L and W are the membrane
length and width, respectively. The flake aspect ratio is defined as
α = a b/ . The flake orientation is described in terms of the mean
orientation angle θ ̅ and its standard normal dispersion σ .

Fick's second law governs the diffusion of the solute through
the membrane matrix. At the steady state, the conservation of the
solute mass implies,

∇∙ = ( )q 0, 1

where q is the diffusion flux. The constitutive equation for the flux
is

φ= − ∇ ( )Dq , 2

where φ is the solute concentration and D is the diffusion coef-
ficient of the neat matrix, which is assumed to be not affected by
the presence of the flakes. The symbol ∇ stands for the gradient
operator. Bold letters indicate vectors and matrices. Vector com-
ponents are indicated with subscripts; for instance q1 and q2 in-
dicate the fluxes in the directions along and across the membrane,
respectively.

Due to the presence of flakes, the membrane is anisotropic in
terms of diffusion properties. The respective diffusivity matrix is

=
( )

⎡
⎣⎢

⎤
⎦⎥,

3
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where the ij components are the diffusivities associated to the
flux in the i-direction due to a concentration gradient in the
j-direction.

Matrix is a second-order tensor, so it can be rotated using
the well-known rotation formula
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where θ is the rotation angle.

Fig. 1. Geometries of typical models of the membrane microstructures: ϕ = 0.1,
=n 500, α = 25, orientation angle θ ̅= °0 with normal dispersion (a) σ = °0 and (b)

σ = °10 .
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