

Contents lists available at ScienceDirect

Science of the Total Environment

Photodegradation of estrogenic endocrine disrupting steroidal hormones in aqueous systems: Progress and future challenges

Kireesan Sornalingam^a, Andrew McDonagh^b, John L. Zhou^{a,*}

^a School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia

^b School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia

HIGHLIGHTS

GRAPHICAL ABSTRACT

- Photodegradation of E1, E2, E3 and EE2 follows 1st or pseudo 1st order kinetics.
- Fastest removal rates occur at pH 7–8, for a range relevant to natural environment.
- The optimum TiO₂ loadings are often between 0.05 and 1 g l^{-1} .
- Estrogenicity persists if the intermediates possess the phenolic moiety.
- Both positive and negative impacts from DOM on photodegradation are reported.

ARTICLE INFO

Article history: Received 3 August 2015 Received in revised form 15 January 2016 Accepted 15 January 2016 Available online xxxx

Editor: Kevin V. Thomas

Keywords: Endocrine disrupting chemicals Photodegradation pathways Titanium dioxide Advanced oxidation process Estrogenic activity

ABSTRACT

This article reviews different photodegradation technologies used for the removal of four endocrine disrupting chemicals (EDCs): estrone (E1), 17 β -estradiol (E2), estriol (E3) and 17 α -ethinylestradiol (E2). The degradation efficiency is greater under UV than visible light; and increases with light intensity up to when mass transfer becomes the rate limiting step. Substantial rates are observed in the environmentally relevant range of pH 7–8, though higher rates are obtained for pH above the pK_a (~10.4) of the EDCs. The effects of dissolved organic matter (DOM) on EDC photodegradation are complex with both positive and negative impacts being reported. TiO₂ remains the best catalyst due to its superior activity, chemical and photo stability, cheap commercial availability, capacity to function at ambient conditions and low toxicity. The optimum TiO₂ loading is 0.05–1 g l⁻¹, while higher loadings have negative impact on EDC removal. The suspended catalysts prove to be more efficient in photocatalysis compared to the immobilised catalysts, while the latter are considered more suitable for commercial scale applications. Photodegradation mostly follows 1st or pseudo 1st order kinetics. Photodegradation typically eradicates or moderates estrogenic activity, though some intermediates are found to exhibit higher estrogenicity than the parent EDCs; the persistence of estrogenic activity is mainly attributed to the presence of the phenolic moiety in intermediates.

© 2016 Elsevier B.V. All rights reserved.

Corresponding author.

E-mail address: junliang.zhou@uts.edu.au (J.L. Zhou).

Contents

1.	Introduction			
2.	Photodegradation of estrogenic steroidal hormones			
	2.1.	Photolysis	213	
	2.2.	Photocatalysis	213	
		2.2.1. Titanium dioxide	213	
		2.2.2. Other photocatalysts	213	
	2.3.	Photodegradation coupled with other advanced oxidation processes	213	
3.	Facto	ors affecting photodegradation	215	
	3.1.	Photolysis	215	
		3.1.1. Light source and intensity	215	
		3.1.2. Solution matrix	215	
	3.2.	Photocatalysis	216	
		3.2.1. Light source and intensity	216	
		3.2.2. Catalyst loading	217	
		3.2.3. Catalyst doping	217	
		3.2.4. Solution matrix	217	
4.	Photo	todegradation kinetics	218	
5.	Form	nation of intermediates and estrogenic activity removal	219	
	5.1.	Degradation pathways	219	
		5.1.1. Estrone	219	
		5.1.2. 17β-estradiol	219	
		5.1.3. Estriol	219	
		5.1.4. 17α-ethinylestradiol	219	
	5.2.	Reduction of estrogenic activity		
		5.2.1. Photolysis	220	
		5.2.2. Photocatalysis	220	
6.	Suspe	pended vs. immobilised catalysts	220	
7.	Futur	ıre challenges	221	
8. Conclusions			221	
Acknowledgements				
Appendix A. Supplementary data			221	
Refe	References			

1. Introduction

Endocrine disrupting chemicals (EDCs) can cause adverse health effects in reproductive, neurological and immune systems WHO (2015); NIEHS. Endocrine disruptors, 2015. The effect of EDCs on wildlife and

humans has been widely reported. EDCs are usually present in the environment at trace concentrations but can still cause significant damage (Snyder et al., 2003). They enter the environment mainly from sewage treatment plant (STP) effluents (Laganà et al., 2004) although other sources include direct discharge, leakage from septic tanks and run-off

Fig. 1. Chemical structures of estrogenic steroidal hormones. The atomic numbering scheme is shown in the structure of E2.

Download English Version:

https://daneshyari.com/en/article/6322825

Download Persian Version:

https://daneshyari.com/article/6322825

Daneshyari.com