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H I G H L I G H T S

• We compare distributions of concentra-
tion and exposure for four urban air
toxics.

• Patterns differ between pollutants with
and without secondary contributions.

• Exposures to benzene and butadiene
were higher for disadvantaged sub-
groups.

• Trends in exposure inequality for the
aldehydes were complex and often
reversed.

• Impacts of urban design choices on
exposures may depend on pollutant
type.
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Air pollution exposure has been linked to numerous adverse health effects, with some disadvantaged subgroups
disproportionately burdened. The objective of this work was to characterize distributions of emissions and con-
centrations of a few important urban air toxics at high spatiotemporal resolution in order to assess exposure and
inequality. Benzene, 1,3-butadiene, formaldehyde, and acetaldehydewere the focus pollutants, with oxides of ni-
trogen (NOx) estimated for comparisons. Primary pollutant emissions were estimated for the full spectrum of
source types in the Tampa area using a hybrid approach that is most detailed for major roadways and includes
hourly variations in vehicle speed. Resultant pollutant concentrationswere calculated using the CALPUFF disper-
sion model, and combined with CMAQ model output to account for secondary formation of formaldehyde and
acetaldehyde. Census demographic data were applied to estimate residential pollution exposures and inequality
among population subgroups. Estimated concentrations of benzene, 1,3-butadiene, and NOx were generally
higher in urban areas and lower in rural areas. Exposures to these pollutants were disproportionately high for
subgroups characterized as black, Hispanic and low income (annual household income less than $20,000). For
formaldehyde and acetaldehyde, the patterns of concentration and exposure were largely reversed. Results sug-
gest that disparities in exposure depend on pollutant type.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Acute and chronic exposure to urban air pollution have been
linked with a wide range of adverse health effects (Pope et al.,
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2002; Brunekreef and Holgate, 2002). Inequality in exposure to air
pollution is a particular concern because prevalence rates of some ef-
fects associated with air pollution are high for socioeconomically dis-
advantaged groups (Morello-Frosch et al., 2011). However, adequate
characterization of disparities in exposure for the mix of air pollut-
ants in urban areas, and mechanistic understanding of causes of
these exposure disparities are lacking; this impedes development
of potential solutions, such as ‘smart’ urban design.

To characterize human exposure in urban areas and inequalities in
exposure between population subgroups, spatially-resolved pollutant
concentrations over a large area are critical (Touma et al., 2006). How-
ever, regulatory monitoring networks are often too sparse to capture
spatial variations at intra-urban scales (Stuart et al., 2009). Further,
acute and chronic exposures can result in distinct health outcomes
(Laumbach and Kipen, 2012); this requires concentrations at high tem-
poral resolution, but covering a long time period. Finally, to improve un-
derstanding of disparities in exposure to the mix of urban air pollution,
more studies are needed for urban air toxics, which are poorly charac-
terized at high resolution and large scope.

Both Gaussian dispersion models and Eulerian chemical trans-
port models are routinely used to estimate ambient air pollutant
concentrations for air quality management and exposure assess-
ment purposes (Ozkaynak et al., 2013). Both types of models are
based on mass-balance equations and diagnose ambient concentra-
tions from detailed information on emission of air pollutants and
meteorology. Dispersion models are typically designed to charac-
terize emission source geometry and to estimate concentrations at
higher spatial resolution. This is beneficial for pollutants dominated
by vehicular sources because their levels often peak in close prox-
imity (hundreds of meters) to busy roadways (Gilbert et al.,
2003). However, chemical transport models typically treat chemi-
cal reactivity in a more detailed manner; this is needed for pollut-
ants with substantial reactive formation in the atmosphere.
Recent work has attempted to combine the benefits of both types
of models (Beevers et al., 2012; Cook et al., 2008; Isakov et al.,
2007; Isakov et al., 2009; Karamchandani et al., 2012; Stein et al.,
2007; Touma et al., 2006). However, these efforts remain computa-
tionally intensive or limited in scope. Finally, one important hurdle
to obtaining the benefits of dispersion modeling over large areas is
the lack of tools that generate the necessary input data on emis-
sions from a comprehensive set of source types involved. Hence,
source types considered in previous work using dispersion models
(e.g. McConnell et al., 2010) are often limited.

In this paper, we estimate detailed emissions, concentrations
and exposures for the area surrounding Tampa, Florida USA; this
area is the focus of a modeling andmeasurement project to improve
understanding of impacts of urban design on exposure disparities
(Gurram et al., 2015; Fridh and Stuart, 2014; Yu and Stuart, 2013;
Evans and Stuart, 2011; Stuart and Zeager, 2011; Stuart et al.,
2009). Contributions of this paper include investigation of a few
toxic air pollutants (benzene, 1,3-butadiene, formaldehyde, and ac-
etaldehyde) that are important in many urban areas, but are
understudied. These are investigated over an entire county and
full year, but at high spatial and temporal resolution. Additionally,
we describe a novel method of combining dispersion modeling
with output from a chemical transport model to obtain concentra-
tions at high resolution while capturing the effects of reactive pol-
lutant formation. We also describe improvements to our approach
that complete a toolset for estimating a comprehensive and de-
tailed urban-scale emission inventory for a non-steady-state dis-
persion model. Finally, we update our findings for oxides of
nitrogen (NOx) to enable comparison of exposures and inequality
between several pollutants important to the mix of urban air pollu-
tion. Overall, our findings contribute to understanding of exposures
that is necessary for appropriate urban design and air quality
management.

2. Methods

2.1. Emission estimation

We estimated the emissions of a select set of urban air toxics (as de-
fined by theU.S. Environmental Protection Agency) andNOx for the spa-
tial domain of Hillsborough County, where the city of Tampa is located,
and its surrounding area (Fig. 1). The estimation period was 2002, with
hourly resolution. A comprehensive set of source categories were cap-
tured, including stationary point, on-road mobile, biogenic, non-point,
and non-roadmobile sources.Many details of our approach for estimat-
ing emissions were described by Yu and Stuart (2013), who considered
only NOx. Because the pollutants here have different sources and are af-
fected by different processes, our approach required substantial aug-
mentation. Methods that were not described previously are the focus
of this section.

2.1.1. Emissions grid specification
Emissions from point sources and from the busiest roadways inside

Hillsborough County were estimated explicitly. All other emissions
were allocated to a regular spatial grid of area sources. We used a
1 km resolution grid in Hillsborough County for all pollutants. For ben-
zene, 1,3-butadiene (andNOx)we also estimated emissions for counties
within a 50 km buffer of Hillsborough to capture their influence on con-
centrations in the county; a lower resolution (5 km) grid was used out-
side the county. For formaldehyde and acetaldehyde emissions, we
rotated the 1 km resolution grid to correspond to cell boundaries from
the grid of a reactive transportmodel (Fig. 1) and did not estimate emis-
sions outside this grid.

2.1.2. On-road mobile sources
Weapplied an extension of our hybridmethod (Yu and Stuart, 2013)

to estimate hourly pollutant emission rates from on-road mobile
sources. Specifically, we use vehicle activity and emission factors to
calculate detailed link-level emissions for roadways with high vehicle
activity (major roadways) in Hillsborough County. For all other road-
ways in the emissions domain, we allocate county-level emissions to a
regular spatial grid. Improvements to the methods are described
below; they include the generation of emission factors using an updated
emissions simulator and the inclusion of hourly roadway speed varia-
tions. A summary of the underlying hybrid method is provided as sup-
plemental materials.

The Motor Vehicle Emission Simulator, MOVES (U.S. Environmental
Protection Agency, 2010a, 2010b) was applied to generate an emission
factor look-up table for matching to roadway links and hours. We pre-
pared MOVES input data using locally-specific information on vehicle
population, vehicle mileage, and meteorological parameters. Specifical-
ly, we determined the distribution of vehicle population using registra-
tion data from the Florida Department of Highway Safety and Motor
Vehicles (2002, 2003), and the distribution of vehicle miles traveled
using county total data for 2002 from the Florida Department of
Transportation (2003). Finally, we extracted the diurnal cycle of hourly
temperature and humidity for each month of 2002 from the county
database of the National Mobile Inventory Model (NMIM) (U.S.
Environmental Protection Agency, 2005a). Default values were used
for all other inputs.

Speed affects vehicular emissions substantially (Bai et al., 2007).
Hence, wematched emission factors using the estimated hourly vehicle
traveling speed on each link. Specifically, we generated MOVES emis-
sions factors using discrete speed bins that span the range of link travel-
ing speeds (2.5 to 75 mph), followed by step-wise linear interpolation
to calculate factors for specific speeds. We estimated traveling speeds
for each link and hour by applying a widely-used empirical function
from the Bureau of Public Roads (Gannett Fleming Inc., 2010a): Sl,h =
Sl,f/[1+ αl (Tl,h/Cl)^βl]. Sl,f is the free flow speed, Tl,h is the traffic volume,
Cl is the roadway capacity, and αl and βl are empirical parameters.
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