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a b s t r a c t

Accurate models for concentration polarization (CP), the buildup of solutes at the membrane–solution
interface in reverse osmosis (RO) channels, are critical for predicting system performance. Despite its
empirical success, many modeling approximations employed in the derivation of the often-used stagnant
film model seem to limit the model's applicability to real systems. In addition, many existing models for
CP use an average mass transfer coefficient with a local mass transfer driving force, which leads to
incorrect predictions for the osmotic pressure at the membrane–channel interface. In this work, we
reduce the Zydney-transformed governing equations for solute mass transfer to an analogous convective
heat transfer problem. We then apply the principle of superposition to fit solutions from the heat transfer
problem to the RO channel boundary conditions, yielding a solution that correctly and consistently
combines a local transport coefficient with a local mass transfer driving force. The resulting expression
for RO element sizing and rating shows good agreement with experimental data and provides a theo-
retical basis for CP modeling that captures the characteristic growth of the mass transfer boundary layer
not accounted for by many existing, more empirical models. The model has important consequences for
the design of RO systems with high permeability membranes, as the decrease in membrane resistance in
these systems leads to a relative increase in the importance of CP in system performance.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In reverse osmosis (RO), the rejection of solutes by the mem-
brane causes a buildup of solutes at the membrane surface, which
increases the local osmotic pressure and retards water flux through
the membrane. This phenomenon is known as concentration po-
larization (CP). Accurate prediction of the osmotic pressure—or
equivalently, the solute concentration—at the membrane surface in
RO systems is thus a critical problem for predicting the permeate
flux, which in turn is essential for membrane sizing and techno-
economic optimization. Good models for CP are even more im-
portant in systems using ultrapermeable membranes (UPMs) [1–3],
as the higher permeability leads to a relatively larger mass transfer
resistance from CP. In addition, high solute concentrations at the
membrane surface can lead to fouling or scaling, which reduce the
effective membrane surface area and increase maintenance cost.
With improved predictability of solute concentrations at the
membrane, such issues can be better prevented.

Almost 50 years ago, Michaels [4] applied the stagnant film
model to specify the solute concentration at the membrane sur-
face as a function of the bulk concentration and the permeate flux.
Despite its analytical simplicity, the classic stagnant film approach
involves several limitations, including the use of a conductive-like
mass transfer coefficient and a wall-normal velocity that is in-
variant through the mass transfer boundary layer. The details of
the approximations used to develop of the stagnant film model
will be presented in Section 2.

Many improved analyses of concentration polarization in
membrane channels are based on simplified mass transfer equa-
tions allowing for analytical or semi-analytical solutions of the
problem [5–9]. However, most of these models are still limited by
modeling approximations such as a constant permeate flux
through the boundary layer and an axially invariant permeate flux.
Further, many models rely on empirical correlations for the mass
transfer coefficient, and/or incorrectly link an average mass
transfer coefficient with a local driving force. Numerical methods
[10–13] have been applied to overcome the drawbacks associated
with the simplified models, but are computationally intensive and
can be difficult to generalize.

The contribution of this paper is threefold. First, following the
approach of Zydney [14], we transform the governing species
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conservation equations to derive a model for concentration po-
larization that mathematically resembles the stagnant film, but
which relaxes several of the often-stated modeling approxima-
tions. Second, we show how, under certain conditions, mass
transfer coefficients for the film can be obtained by analogy to
convective heat transfer, a subject for which a vast theoretical and
experimental literature is available. Finally, we use the principle of
superposition to develop a new model for membrane performance
(recovery ratio or permeate flux) as a function of operating con-
ditions, system geometry, and mass transfer coefficients. The latter
are obtained from constant wall flux solutions to the governing
transport equations. Results from the model are benchmarked
against measurements, existing models in the literature, and so-
lutions from direct numerical simulation. The results show better
predictive performance at high degrees of concentration polar-
ization, as would be found in systems with UPMs.

2. Development of the stagnant film model

A stagnant film (Fig. 1) assumes that there are no axial varia-
tions in the mass transfer boundary layer (MTBL) thickness, the
solute concentration, and the solvent flux, leading to a 1-D pro-
blem. Application of the stagnant film model to concentration
polarization was first presented by Michaels [4] and is derived by
balancing the convective solute flux ρ( )v wn towards the membrane
with the counter-diffusive flux of solute away from the membrane
that results from membrane solute rejection. Axial variations in
both the permeate velocity and the solute concentration gradient
are neglected, resulting in the following equation for species
conservation:

ρ ρ− = ( )v w D
dw
dn

0, 1n

where n is the unit vector that points normal to the membrane
surface into the solution and −vn is the permeate velocity or vo-
lumetric flux. The mixture density is denoted ρ, w is the solute
mass fraction, and D is the diffusivity of the solute in the solvent.
Although the typical RO feed may contain multiple solutes, here
we lump them together, modeling solute diffusivity with a single
value D.

Taking the permeate velocity as constant through the MTBL
allows Eq. (1) to be integrated across the MTBL thickness δ,
yielding the proportionality between the permeate flux and the
logarithm of the bulk-to-wall concentration ratio that is the hall-
mark of the stagnant film model:

δ
=

( )

⎛
⎝⎜

⎞
⎠⎟v

D w
w

ln .
2

n
w

b

The term δD/ is the mass transfer conductance based on the
logarithmic concentration driving force, and is constant in the
stagnant film model.

However, in long but narrow membrane channel flows, the
concentration boundary layer can grow to cover a significant
portion of the—or even the entire—channel height. Some key
limitations of the stagnant film model mentioned in literature
(see, e.g., [9,15] for a description) revolve mostly around the
simplification to 1-D, and include:

� neglecting axial convection near the membrane surface,
� neglecting the influence of the permeate flux on the boundary

layer thickness,
� neglecting axial variation in the permeate flux,
� assuming fully developed velocity and concentration profiles.

In spite of these limitations, however, models that use a loga-
rithmic driving force to characterize the diffusion of solute across
the MTBL have achieved considerable predictive success. In the
following section, we follow the approach of Zydney [14], who
showed that the mathematical form of the stagnant film model,
albeit with a different mass transfer coefficient, can be derived
using far fewer approximations than those listed above.

3. Zydney's transformation and the analogous heat transfer
problem

3.1. Transformation using a pseudo-concentration

Zydney [14] uses a transformation of variables to show that the
logarithmic concentration driving force that characterizes the
stagnant film model is the correct driving force for the coupled
convective and diffusive transport near the membrane surface. In
this section, we adhere to Zydney's general idea [14] that validates
the form of the stagnant film model by transforming the transport
equation of a passive scalar (the solute). For simplicity, but without
loss of generality, the governing equations are presented in two
dimensions. For a spatially invariant density, the species con-
servation equation can be written in terms of solute mass fraction
w, which yields
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where → = ( )u u u,x y is the velocity field and D is the mass diffusivity
of the solute in the solution. At the permeable boundary, i.e., the
membrane surface, the no solute flux boundary condition is

ρ ρ− ∂
∂

− = ( )D
w
n

wv 0. 4n

A non-zero term on the right hand side of Eq. (4) can be added to
account for solute permeation through the membrane, but we will
restrict ourselves to the case of full solute rejection for simplicity.

Along the impermeable boundary or a symmetry plane, there is
no solute flux:

∂
∂

= ( )
w
n

0. 5

For the case that density changes by the solute/solvent mixture are
small (i.e., ρ =D Dt/ 0), the x and y momentum equations read,
respectively
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Fig. 1. As the solute is pulled convectively towards the wall, js, under the influence
of the solvent suction through the wall, jw , a counter-diffusive flux of the solute
back towards the bulk develops. In a stagnant film, all properties vary only in the y-
coordinate.
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