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climate change. The membrane contactor is an emerging and promising membrane technology for PCC as
it integrates the benefits of both liquid absorption (high selectivity) and membrane separation (mod-
ularity and compactness). This review aims to provide a state-of-the-art assessment of the research work
carried out so far on membrane contactor technology in PCC. It details common aspects of membrane

Keywords: contactors, such as technological advantages, membrane wetting, mass transfer and module design, as
Membrane contactor well as new advances (e.g., new membranes and absorbents used in absorption processes) and novel
Carbon capture applications (e.g., direct CO, stripping and integrated heat recovery in desorption processes). Moreover,

Gas separation
Flue gas
Post-combustion carbon capture

the difference in performance between membrane absorption and conventional absorption is also
compared and discussed. Lastly, we discuss the status and progress of membrane contactors in PCC and
offer some recommendations for future work. This paper provides a clear overview on the recent de-
velopments of membrane contactor technology in PCC.
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1. Introduction

Carbon dioxide (CO,) is the major greenhouse gas contributing
to global climate change. CO, concentrations in the atmosphere
have increased by more than 100 ppm since their pre-industrial
levels (~280 ppm), reaching 384 ppm in 2007 [1-3]. Worldwide,
fossil fuel-fired power plants are the largest point sources of CO,
emissions [4]. Therefore, CO, capture from power stations is of
great importance in addressing the global concern of climate
change.

1.1. Post-combustion carbon capture

Currently, there are three widely studied technologies for car-
bon capture: pre-combustion capture, post-combustion capture
(PCC) and oxy-fuel combustion. Of these, PCC holds the greatest
promise because it can be retrofitted to existing units in power
plants.

However, there are several challenges in capturing CO, from
flue gas because of its special properties (Table 1). These include
low flue gas pressure (~1 atm), low CO, concentration in the flue
gas (typically < 16%), and small size difference among the gas
molecules. All these factors reduce the effectiveness of current
separation technologies and increase costs [5].

Liquid absorbent based PCC is recognized as the state-of-the-
art carbon reduction technology, to a large extent due to its high
CO, removal efficiency (usually > 80%) from flue gas even at low
CO, concentrations [6,7]. A typical liquid absorbent based PCC
system is illustrated in Fig. 1. The flue gas from the power plant
undergoes pretreatment and cooling before entering the absorber.
Pretreatment aims to remove undesirable particles, SO, and NO,
that adversely affect CO, absorption. The flue gas temperature
should be cooled to 45-50 °C to minimize evaporated solvent loss

and maximize CO, absorption [2]. The cooled flue gas is absorbed
by the solvent in the absorber, forming CO, rich solvent. The
scrubbed gas, along with a small amount of solvent is then water
washed and vented to the atmosphere. The CO, rich solvent is
preheated via a lean/rich heat exchanger by the regenerated CO,
lean solvent, and then pumped to the top of the desorber. CO; is
thermally released in the desorber where substantial amounts of
thermal energy are supplied via the reboiler.

Currently, amine-based absorption is the leading technology
for CO, capture, which occupies more than 90% of the market. In a
conventional absorption plant, acid gas is brought in direct contact
with lean solvent inside an absorber (usually a high column),
where mass transfer takes place at the gas-liquid interface [8]. As
absorption of CO-, in a liquid is a process with equilibrium lim-
itation, vapor-liquid equilibrium, operating conditions, physio-
chemical properties, and reaction equilibrium and kinetics play
important roles in determining the required interfacial areas, and
thus the height of an equilibrium stage and the design of the

Table 1
Typical properties of coal-fired flue gas after SO, scrubbing in post-combustion
carbon capture (modified from [5,233]).

Flue gas Composition or condition Kinetic diameter (A)
CO, 10-16 wt% 3.30

N, 70-75 wt% 3.64

H,0 (vapor) 5-7 wt% 2.65

0, 3-4 wt% 345

Cco ~20 ppm 3.75

NOy <400 ppm

SOy <400 ppm

Temperature 45-120 °C

Pressure ~ 1 bar

Note: the water vapor content is dependent upon the flue gas temperature.
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