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H I G H L I G H T S

• We used FTIR–ATR data tomodel the dis-
tribution of SOC in topsoils from NW
Spain.

• SOC predictions using FTIR–ATR are simi-
lar to those obtained by wet chemistry
data.

• Climate is the main parameter influenc-
ing the accumulation of SOC in the study
area.

• This method is suitable to quickly
map SOC in acidic soils under similar
conditions.
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In this study we present a methodology to estimate and map the content of soil organic carbon (SOC) in topsoils
using spectroscopic (FTIR–ATR) and environmental raster data. We determined the SOC content in 221 topsoil
samples in Galicia (NW Spain) using the Walkley–Black method. FTIR–ATR spectroscopic data was measured
upon the same set of samples. The Random Forest (RF) techniquewas used to link the measured SOC concentra-
tions to the FTIR–ATR measurements in order to identify the relevant absorbance bands explaining most of the
variability in SOC. We then used linear regression (MLR) to predict SOC concentrations from the selected FTIR–
ATR bands as independent proxy. This model showed a good predictive performance (r-squared = 0.88;
RSME=2.14;ME=0.05; RPD=3.14), indicating that SOC can be effectively estimated from the identified spec-
tral bands. Finally, we used Partial Least Squares (PLS) to model the spatial distribution of the predictor bands
using a number of environmental raster maps (climate, land use and geology) as covariates. This new raster
was used within the MLR model previously created to generalize the predictions of SOC in the whole study area.
This approach shows that FTIR data can be used to map SOC while minimizing analytical costs and time efforts.
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1. Introduction

Soil organic carbon (SOC) stock constitutes the largest pool of terres-
trial organic carbon, acting as an important long-term sink for carbon
released to the atmosphere by human activities (Bellon-Maurel and
McBratney, 2011; Grinand et al., 2012; Lal, 2004; Madari et al., 2006;
Pedersen et al., 2011). The evaluation of SOC stocks is important for
a proper evaluation of the effect of the emission of greenhouse
gases to the atmosphere under different climate-change scenarios
(Abd-Elmabod et al., 2014; Lal, 2004; Page et al., 2013).

Climate, land use and the nature of the soil mineral fraction are
environmental variables closely related to the amount of SOC stored in
soils. At a global scale, climate has a clear effect on the amount of organic
carbon stored in soils, being low temperatures and high precipitation
the most favourable conditions for enhanced accumulation (Barford
et al., 2001; Batjes, 1996;Melillo et al., 2002; Trumbore et al., 1996). An-
thropogenic practices such as deforestation, drainage and forest fires are
converting large areas into globally significant sources of carbon dioxide
to the atmosphere (Lal, 2004; Monastersky, 2014; Moore et al., 2013).
Soil mineralogy also has an effect on both the quantity and turnover of
SOC in soils. Torn et al. (1997) showed a positive relationship between
the presence of non-crystalline minerals and the SOC content, and it
has been observed that amorphous phases of iron and aluminium
oxy-hydroxides in soils derived from metamorphic and igneous basic
rocks can form stable organo-mineral complexes with organic
compounds, which promotes the accumulation of SOC (Álvarez et al.,
1992; Carballas et al., 1979; García-Rodeja et al., 1987; Verde et al.,
2004). Additionally, stable micro-aggregates, which protect organic
compounds against microbial degradation, have been observed in soils
with high clay contents (Jobbágy and Jackson, 2000; Lal, 2004; Torn
et al., 1997).

Over the past few decades, Digital Soil Mapping has been used to
predict and describe the spatial distribution of soil properties (Behrens
et al., 2005; McBratney et al., 2003; Scull et al., 2003; Vaysse and
Lagacherie, 2015). Digital Soil Mapping makes use of statistical
algorithms to relate soil parameters, measured on field samples, to
environmental auxiliary data and make predictions on a spatial basis.
The approaches most commonly used to estimate SOC include multiple
linear regression, ordinary kriging, co-kriging, regression-kriging and geo-
graphically weighted regression (Chaplot et al., 2001; Chen et al., 2000;
Dobos et al., 2006; Grimm et al., 2008; Kumar and Lal, 2011; Kumar
et al., 2012; Martin et al., 2014; Mishra et al., 2009; Phachomphon et al.,
2010; Simbahan et al., 2006). Recent studies obtained good SOC predic-
tions using Random Forest and Partial Least Squares Regression algo-
rithms (Grimm et al., 2008; Rodríguez-Lado and Martínez-Cortizas,
2015; Were et al., 2015).

The development of methods for mapping SOC contents along ex-
tensive areas while minimizing sampling and laboratory analyses is
still a challenge. Wet chemistry techniques to measure SOC concentra-
tions, such as the Walkley–Black method, are time consuming and
relatively expensive. During the last years, infrared spectroscopy has
been proposed as a robust, rapid and effective alternative technique to

evaluate soil compounds and properties such as organic carbon, total
carbon, total nitrogen, potassium, phosphorus, organic matter and clay
contents, CEC, pH or water potential by using statistical models (Ge
et al., 2014; Linker, 2011; Soriano-Disla et al., 2014; Viscarra Rossel
et al., 2006). Models using spectroscopic measurements to evaluate
SOC concentrations mostly involve data either in the mid-infrared
(MIR, Table 1) or near-infrared (NIR) regions, or a combination of data
in the near-infrared and visible (VisNIR) regions (Nocita et al., 2014;
Shi et al., 2015; Stenberg et al., 2010). Accurate models should present
small standard errors, high R-squared values and high ratios of standard
deviation (RPD) (Bellon-Maurel et al. 2012).

MIR (4000 to 400 cm−1) is a prominent region that clearly discrim-
inates molecular functional groups, easily identifiable through spectral
libraries (Reeves, 2010). Since bands in MIR can be affected by distor-
tion or total absorption phenomena, the dilution of the samples before
the measurement is often required (Linker, 2011; McCarty et al.,
2002). MIR spectroscopy coupled to Fourier Transform Infrared Attenu-
ated Total Reflectance (FTIR–ATR) is a powerful technique for quantita-
tive and qualitative analyses which avoids the dilution of the samples
required by MIR analysis and thus decreases the time required for
each measurement (Ge et al., 2014). FTIR–ATR has been widely used
to quantify different soil properties and processes such as nitrate con-
centrations and the kinetics of its transformation (Borenstein et al.,
2006; Janh et al., 2006; Kira et al., 2014; Linker et al., 2004, 2005,
2006; Shaviv et al., 2003), the speciation and amount of organic and in-
organic carbon and the sand and clay contents (Ge et al., 2014; Solomon
et al., 2005), the adsorption mechanisms of phosphate and arsenate
(Arai and Sparks, 2001; Sun and Doner, 1996), and it has been even
used to perform agro-environmental classifications of soils (Aranda
et al., 2014; Du et al., 2008).

Multivariate statistics constitute a highly suitable mean to analyse
complex data such as data from spectroscopy (Linker, 2011). Algo-
rithms such as Multiple Linear Regression (MLR), Principal Component
Regression (PCR), Partial Least Squares regression (PLS), Artificial
Neural Networks (ANN), Multivariate Adaptive Regression Splines
(MARS) or Random Forest (RF) make use of spectroscopic data to pre-
dict specific soil properties (Bellon-Maurel and McBratney, 2011;
Knox et al., 2015; Stenberg et al., 2010). MLR, PLS and PCR are mostly
used for this purpose, while ANN, MARS and RF constitute more elabo-
rated algorithmsmainly usedwhen the formermethods fail to ascertain
relationships between soil properties and the spectroscopic signal (Næs
and Mevik, 2001; Viscarra Rossel et al., 2006). The identification of
specific spectroscopic bands, within the whole spectroscopic signal,
explaining a high proportion of variability of the soil property under in-
vestigation, is of special interest since it can provide information on the
dominant constituents or processes influencing such property. Recent
studies showed that non-linear methods, such as regression trees, can
be used to identify specific spectroscopic bands that improve the perfor-
mance of the obtained models. Knox et al. (2015) modelled soil carbon
fractions using Random Forest and concluded that the most influential
bands to explain SOC were those allocated around 2200 and
1700 cm−1. Peaks around 2000 cm−1 have been identified as Si–O
vibration from quartz. These peaks are usually intense in mineral soils
with poor organic matter content (Du and Zhou, 2009; Reeves and
Smith, 2009; Soriano-Disla et al., 2014). Peaks around 1700 cm−1

were attributed to stretching of C_O bonds from aldehydes, ketones
and carboxylic acids associated to hydrophobic and hydrophilic com-
pounds of soil organic matter (Ellerbrock and Kaiser, 2005; Pedersen
et al., 2011; Simkovic et al., 2008; Viscarra Rossel and Behrens, 2010;
Vohland et al., 2014).

Despite the good model performance obtained in these studies, the
results can only be used to quantify the amount of SOC from spectro-
scopic data at sample scale. However studies showing how to translate
the statistical relationships between SOC and spectroscopic data to a
predictive model depicting SOC variability in space are lacking. In this
study we present an approach to map SOC content in soil epipedons

Table 1
Summary of the goodness of fit of models developed to predict SOC from MIR data in
bibliography.

Location Samples R2
validation RPD Reference

Texas, USA 270 0.77 2.1 Ge et al. (2014)
France 2084 0.90 3.0 Grinand et al. (2012)
Australia 298 0.92 – Janik and Skjemstad (1995)
Australia 116 0.77 – McBratney et al. (2006)
Central USA 273 0.94 4.1 McCarty et al. (2002)
Central USA 237 0.94 – Reeves (2010)
Australia 118 0.73 1.7 Viscarra Rossel et al. (2006)
Germany 60 0.78 2.1 Vohland et al. (2014)
Switzerland 111 0.94 4.1 Zimmermann et al. (2006)
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