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The availability of detailed input data frequently limits the application of process-based models at large scale. In
this study, we produced simplified meta-models of the simulated nitrous oxide (N,0) emission factors (EF) using
NZ-DNDC. Monte Carlo simulations were performed and the results investigated using multiple regression anal-
ysis to produce simplified meta-models of EF. These meta-models were then used to estimate direct N,O emis-
sions from grazed pastures in New Zealand.

New Zealand EF maps were generated using the meta-models with data from national scale soil maps. Direct
emissions of N,O from grazed pasture were calculated by multiplying the EF map with a nitrogen (N) input
map. Three meta-models were considered. Model 1 included only the soil organic carbon in the top 30 cm
(SOC30), Model 2 also included a clay content factor, and Model 3 added the interaction between SOC30 and clay.
The median annual national direct N,O emissions from grazed pastures estimated using each model (assuming
model errors were purely random) were: 9.6 Gg N (Model 1), 13.6 Gg N (Model 2), and 11.9 Gg N (Model 3).
These values corresponded to an average EF of 0.53%, 0.75% and 0.63% respectively, while the corresponding av-
erage EF using New Zealand national inventory values was 0.67%. If the model error can be assumed to be inde-
pendent for each pixel then the 95% confidence interval for the N,O emissions was of the order of 4-0.4-0.7%,
which is much lower than existing methods. However, spatial correlations in the model errors could invalidate
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this assumption. Under the extreme assumption that the model error for each pixel was identical the 95% confi-
dence interval was approximately 4+ 100-200%. Therefore further work is needed to assess the degree of spatial

correlation in the model errors.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In New Zealand, N,O emissions from agricultural soils are a major
greenhouse gas source, accounting for 10.4% of emissions on a CO,
equivalent (COye) basis (Ministry for the Environment, 2015). These
emissions result from the microbial transformation of N-containing
compounds in animal excreta and fertilisers applied to soils. As there
are a large number of interacting processes involved in the production
of N0, emission rates are highly variable and can be influenced by
many soil, management and climate factors. N,O emissions can be
either direct (N,O emitted from the point of application) or indirect
(emissions occurring offsite from leached NO3 or volatilised and
redeposited NHs). In this study we consider only direct N,O emissions
from grazing animal excreta and fertiliser N, although similar methods
could be used to model the NO3™ leaching and NHj5 volatilisation.

New Zealand currently uses a Tier Il approach to calculate N,O emis-
sions in the National Inventory (Ministry for the Environment, 2015).
This involves multiplying the total amount of N from fertiliser and ani-
mal excreta applied to soil by country specific emission factors (EFs).
These EFs are 0.01 for urine, 0.0048 for urea, and 0.0025 for faecal N.
Lower EFs are used for the fractions of excretal and fertiliser N that are
applied with a nitrification inhibitor. The inventory model has the
advantage of being simple to apply and the required activity data are
available at national scale. However, using this Tier Il methodology the
N,O emissions are not sensitive to changes in weather conditions, soil
types or management strategies (other than DCD application or an
overall reduction in animal excreta or fertiliser applications). This meth-
od also results in a high uncertainty in the estimated N,O emissions.
Kelliher et al. (2003) estimated that for the 2002 inventory the relative
error of total N,O emissions ranged from —42% to + 74% (95% confi-
dence interval), of which 88% was attributed to uncertainty in the
value of EF for animal excreta.

Process-based models are an alternative approach to estimating N,O
emissions. These models aim to simulate the underlying processes that
result in N,O emissions. This means that not only are the models sensitive
to changes in soil, climate or management factors, there is also the poten-
tial to simulate multiple impacts simultaneously (e.g. N,O emissions, NO3
leaching, crop growth). There are a number of process-based models that
can simulate N,O emissions, with DNDC (Li et al., 1992) and DayCENT
(Parton et al., 1996) being two of the most widely used.

In this study we focus on the DNDC (DeNitrification DeComposition)
model. DNDC is a process-based model that consists of a number of
interacting sub-modules that simulate the soil thermal-hydraulic pro-
cesses, plant growth, decomposition, nitrification, and denitrification
(Lietal., 1992). The soil is divided into a number of uniform horizontal
layers and the model simulates transport of water and nutrients in 1 di-
mension only. The model operates on a daily time-step, but uses an
hourly time-step for the nitrification/denitrification processes. The
model uses daily climate input data and can simulate a range of different
crops and management practices. Since its initial development there
have been many modifications and improvements to the model
(reviewed by Gilhespy et al., 2014; Giltrap et al., 2010). NZ-DNDC is a
New Zealand specific version of the DNDC model that has been adapted
to New Zealand's year-round grazed pasture systems (Saggar et al.,
2004, 2007a) and validated against N,O data for dairy- (Saggar et al.,
2004) and sheep- (Saggar et al., 2007b) grazed systems. NZ-DNDC
was based on DNDC version 8.6 K. Further developments have been
made to the DNDC model and these have not all been captured in NZ-
DNDC.

DNDC has been applied at regional or higher scale for a number of
different outputs, farms systems, and countries (e.g. Butterbach-Bahl
et al., 2004, 2009; Follador et al., 2011; Fumoto et al., 2010; Giltrap
et al., 2008; Kesik et al., 2005; Kiese et al., 2008; Leip et al., 2011b;
Levy et al,, 2007; Li et al., 2004, 2014; Liu et al., 2006; Lugato et al.,
2010; Miehle et al., 2006; Pathak et al., 2005; Qiu et al., 2011; Sleutel
et al., 2006; Smith et al., 2004; Tang et al., 2006, 2010; Werner et al.,
2007; Xu et al., 2011, 2012; Zhang et al., 2006, 2009a,b, 2010, 2011,
2012). The method involves dividing the region into a number of small-
er units for which the input parameters are assumed to be homoge-
neous and running the model for each sub-unit. However, there are
some limitations with this method. Obtaining the full set of input data
for each sub-unit is usually not possible, requiring some assumptions
to be made. The assumption of homogeneous sub-units will also cause
some uncertainties, although these can be quantified if information
about the distribution of the input parameter within a sub-unit is avail-
able. Lack of suitable data for model validation is also a common limita-
tion (Leip et al.,, 2011a). In addition, the computer run-time required
may be high when there are a large number of sub-units to simulate,
and it is not always easy to integrate the full process-based model
with other models (e.g. economic models, decision support tools). The
uncertainty is estimated using the most sensitive factor (MSF) method,
where each sub-unit is run using the minimum and maximum value of
the MSF to estimate the possible range of the emissions.

Meta-modelling is a method for producing a simplified version of a
model that preserves the key relationships between the input vari-
ables and the response (within the domain of interest) but with
lower computational and/or data requirements. To develop a meta-
model the full model is run many times over the full range of possible
data inputs. The meta-model is then developed using statistical
methods on the model inputs and output. It should be noted that
the meta-model will only be a valid representation of the full model
over the range of input values originally simulated and should not
be used for extrapolation.

Several studies have used meta-modelling techniques on the DNDC
model. Britz and Leip (2009) developed meta-models of DNDC for 13
output variables with 11 crops in Europe. Each meta-model was a re-
gression model. There were just under 200 parameters offered for selec-
tion for each model (including transformations and interactions of the
basic inputs) and each meta-model typically included between 50 and
100 regressors.

Villa-Vialaneix et al. (2012) used multiple methods to generate
meta-models of DNDC for N,O emissions from arable land in Europe.
These methods included linear regression models, splines, kriging, a
neural network, support vector machine (SVM), and a random forest.
They found that the splines method worked best when there were
few training data available, but for large training data sets the SVM
and random forest method produced faster and more accurate results.
Perlman et al. (2014) estimated global N,O emissions from wheat and
maize using a random forest meta-model of DNDC.

The New Zealand specific version of DNDC (NZ-DNDC; Saggar et al.,
2004, 2007a) has been used directly to estimate N,O emissions from ag-
riculture in the Manawatu-Wanganui region (Giltrap et al., 2008).
Giltrap et al. (2013) also developed an emission factor look-up table
for N,O emissions from grazed pastures based on climate region, soil
and farm type based on large number of simulations covering the
range of soil and climate inputs. However, this method still produced
large uncertainties due to the soil categories used having very broad
ranges for key properties.
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