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a b s t r a c t

In the present work, Nernst Planck (NP) approach based on non-steady state flux has been explored to
predict the transport kinetics in a Donnan dialysis process. The calculations have been carried out for
pure and mixed bi-ionic monovalent–monovalent systems. Appropriate forms of the equations have
been derived and then solved numerically by finite difference method using appropriate initial and
boundary conditions. The results of the calculations have been compared with the experimental trans-
port profiles and NP calculations based on pseudosteady state approximation. It has been found that the
NP method based on non-steady state flux is capable of predicting the transport kinetics for both pure
and mixed ionic systems for all salt compositions. On the other hand, NP approach based on pseudos-
teady state approximation works only at high salt concentrations (40.1 M) for pure ionic systems. Also,
the approach completely fails for mixed ionic systems. The NP approach with non-steady state flux is
capable of accounting the accumulation of ions in the membrane and the time lag characteristics pre-
valent dominantly in the initial time scales of a membrane transport process.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The permselective nature of the ion-exchange membranes, due
to Donnan exclusion, is extensively exploited in Donnan dialysis
(DD) process which is used for enrichment, recovery and separa-
tion of trace metal ions [1,2]. Several ecofriendly applications of
DD process for the separation of metal ions and charged organic
species have been reported elsewhere [3–13]. The ion-exchange
membranes are also widely used in electrodialysis and in elec-
trochemical devices such as batteries [14–16], fuel cells [17–19] etc
due to their ability to regulate transport of ions. For successful use
of these membranes for any application, the knowledge of basic
transport phenomena of ions through these membranes is im-
portant. Transport mechanism of ions and solvent through biolo-
gical membranes has also some similarity with that of ion-ex-
change membranes [20,21]. There has been accelerated effort to
model the transport of ions through ion-exchange membranes
with the rationale to simulate and optimize the performance of a
given ion-exchange membrane to achieve a desired separation or
electrochemical response. As for example, in a Donnan dialysis
process, while the equilibrium distribution of the ions is well
understood, there has been continuous effort to understand and
predict the transport rate. Several mathematical models have been

developed by a number of researchers to explain the transport of
ions and solvent through ion-exchange membranes keeping in
view the importance of the transport properties in polymer elec-
trolyte fuel cells [22–25]. In general, two fundamental approaches
based on Nernst-Planck (NP) equation [26,27] and Maxwell Stefan
equation [28] have been used to calculate the membrane diffusion
controlled transport rate in ion-exchange membrane. Verbugge
and Hill [27] developed a general model based on NP approach for
calculation of ion and solvent transport in ion-exchange mem-
branes, applicable with or without the flow of electric current.
Similarly, Yang and Pintauro [29] proposed a multicomponent
space charge model for transport through ion-exchange mem-
branes. Both these models are rather involved. For explaining the
transport rate in a Donnan dialysis process, simpler models have
been used based on NP equation or mass balance approach
[26,30–34]. All these models use pseudosteady state approxima-
tion in which the flux of ions across the membrane is assumed to
be constant and linear integration of the flux through the mem-
brane thickness have been carried out. These models use experi-
mental transport parameters such as self-diffusion coefficients of
the ions in the membrane (D), concentration of different compo-
nents in the solution/membrane interface (selectivity coefficient)
and ion-exchange capacity (Q) of the membrane as input. In our
earlier work [31], the NP approach based on pseudosteady state
approximation was successfully applied to predict the transport
rate of monovalent–monovalent and monovalent–bivalent sys-
tems at equimolar initial feed and receiver (0.5 M and 0.1 M)
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concentrations. But this approximation is not valid, especially in
the initial period of a membrane diffusion process, where for a bi-
ionic system, the membrane is invaded by the counterion not
present in the membrane and the flux through the membrane is
not constant. Also, pseudosteady state approximation assumes an
average interdiffusion coefficient across the membrane and ne-
glects its variation along the spatial co-ordinate in the membrane.
This is not true due to the dependency of the interdiffusion coef-
ficient on the concentration of the ions in the membrane which
changes across the membrane nonlinearly (especially the initial
time scales). Ho et al. [35] have proposed a transport model in
which the non-steady state diffusion has been accounted using an
integration technique developed by Caillaud and Padmanabhan
[36]. However, the approach assumes the diffusivity ratio of the
two ions to be same in aqueous solution and in membrane. This
assumption is not true especially for ion-exchange membranes
like Nafion where the diffusivity trend in membrane of ions is not
same as in aqueous solution [37]. Also, along with other experi-
mental inputs, this approach requires determination of large
number of differential quadrature coefficients, αi,j and βi,j, which
makes the method cumbersome. In the present work, Nernst
Planck approach based on non-steady state flux has been explored
to calculate the transport profiles in a Donnan dialysis process.
Appropriate forms of the equations have been derived and solved
numerically by finite difference method using appropriate initial
and boundary conditions. The calculations have been carried out
for monovalent–monovalent pure and mixed bi-ionic systems. The
results have been compared with the experimental measure-
ments. The present method of calculations has also been com-
pared with the calculation results on the basis of pseudosteady
state approximation, given in detail in earlier publications [31–34].

2. Theoretical

Consider a two compartment system where a cation exchange
membrane separates the compartments, I and II, containing the
electrolyte solutions AX and BY respectively at time, t¼0. At t40,
ion-exchange process ⇄

+ +
z A z BB

z
A

zA B will take place due to the
permselectivity of the cation exchange membrane. The co-ions are
assumed to be completely excluded from the membrane. The so-
lutions in the compartments are continuously stirred thereby en-
suring membrane diffusion-controlled ion-exchange process. The
transport of ions along the thickness of the membrane is assumed
to occur through the continuous water channels present in the
membrane. The effect of membrane structure and the specific
interactions of the ions with the membrane matrix are assumed to
be included in their respective self-diffusion coefficients (Di).
Using Nernst Planck equation, membrane electroneutrality and
mass balance condition, flux of ion,

+
AzA in the membrane can be

expressed as [26,38]:
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Eq. (1) shows that the flux of a particular ion depends on its
concentration gradient, membrane concentration and SDC of that
particular ion as well as on the membrane concentration and SDC's
of the other ions present in the solution. In situations where
concentration of one ion is kept very high than the other ion, the
equation can be simplified to Fick's first law and can be easily
solved to calculate the flux in a Donnan dialysis process, based on
pseudosteady state approximation. However, in present studies,
we have not made any assumption regarding concentration of ions
in the two compartments. Also, in the present calculations, un-
steady nature of the flux, which is very important in initial time

scales, has been accounted for. This has been done by considering
the variable nature of the flux through the membrane thickness, as
given by the Fick's second law:
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Substituting Eq. (1) in Eq. (2), the concentration of ion
+

AzA at
any time, t and membrane thickness, x is given as:
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This nonlinear diffusion equation describes the time and space
dependence of the concentration of ion

+
AzA , CA in the membrane.

Here DAB is the interdiffusion coefficient given by:
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As seen from the equation, interdiffusion coefficient is a func-
tion of the self diffusion coefficient of the two ions and also on the
concentration of the two ions in the membrane. Since these con-
centrations will change with time and spatial co-ordinate, the
interdiffusion coefficient will also change with time and spatial co-
ordinate unlike self-diffusion coefficients. Eqs. (3) and (4) are ex-
pressed in terms of dimensionless quantities by using the fol-
lowing relations:
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where L is the thickness of the membrane. Here yA represents the
dimensionless variable for concentration, CA and is a function of
dimensionless variables for time (τ) and x-co-ordinate (ε) along
the membrane thickness. In terms of yA, τ and ε, Eq. (3) can
therefore be written as:
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where D(yA) is the interdiffusion coefficient (in terms of di-
mensionless quantities), as given by:
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where a and b are given by:
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As seen from Eqs. (6) and (7), the interdiffusion coefficient and
hence flux is a function of not the absolute value of the charges
and self-diffusion coefficients of the two ions, but depends on the
ratio of the charges and self-diffusion coefficients of the two ions
undergoing ion-exchange. Using finite difference method, Eq. (6)
can be written as:
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