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HIGHLIGHTS

GRAPHICAL ABSTRACT

* New framework provides high re-
solved spatial fields of traffic-related
air pollutants.

Framework rapidly captures spatial
concentration gradients in near-road
environment.

Concentration reduction due to distance
from roadways varies by pollutant and
region.

HDDV contributes over 55% to NOx and
PM, s while LDGV contributes >50% to
Benzene.

METARE approach reduces computa-
tional burden by 88-fold to obtain an-
nual averages.

Spatial maps of modeled PM, 5 concentrations in Cumberland County, ME (top) and the North Carolina Piedmont
region (bottom) for 2010. The color bar represents pollutant concentration in pg/m°.
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In this study, we combine information from transportation network, traffic emissions, and dispersion model to
develop a framework to inform exposure estimates for traffic-related air pollutants (TRAPs) with a high spatial
resolution. A Research LINE source dispersion model (R-LINE) is used to model multiple TRAPs from roadways
at Census-block level for two U.S. regions. We used a novel Space/Time Ordinary Kriging (STOK) approach that
uses data from monitoring networks to provide urban background concentrations. To reduce the computational
burden, we developed and applied the METeorologically-weighted Averaging for Risk and Exposure (METARE)
approach with R-LINE, where a set of selected meteorological data and annual average daily traffic (AADT) are
used to obtain annual averages. Compared with explicit modeling, using METARE reduces CPU-time by 88-fold
(46.8 h versus 32 min), while still retaining accuracy of exposure estimates. We show two examples in the Pied-
mont region in North Carolina (~105,000 receptors) and Portland, Maine (~7000 receptors) to characterize near-
road air quality. Concentrations for NOy, PM, 5, and benzene in Portland drop by over 40% within 200 m away
from the roadway. The concentration drop in North Carolina is less than that in Portland, as previously shown
in an observation-based study, showing the robustness of our approach. Heavy-duty diesel vehicles (HDDV)
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contribute over 55% of NOy and PM, 5 near interstate highways, while light-duty gasoline vehicles (LDGV) contribute
over 50% of benzene to urban areas where multiple roadways intersect. Normalized mean error (NME) between ex-
plicit modeling and METARE in Portland ranges from 12.6 to 14.5% and normalized mean bias (NMB) ranges from

—12.9 to —11.2%. When considering a static emission rate (i.e. the emission does not have temporal variability),
both NME and NMB improved (10.5% and —9.5%). Modeled concentrations in Detroit, Michigan at an array of
near-road monitors are within a factor of 2 of observed values for CO but not NO,

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Transportation plays an important role in modern society, but its im-
pact on air quality can have significant adverse effects on public health,
as numerous studies have shown (Gauderman et al., 2007; Baccarelli
et al., 2009; Lindgren et al., 2010; McConnell et al., 2010; Kiinzli, 2014;
Urman et al.,, 2013). Because 19% of the U.S. population lives near
heavy-traffic roads, and this group includes larger shares of both non-
white residents and lower median household incomes (Rowangould,
2013), it is essential to characterize near-road exposure to address con-
cerns about public health and environmental justice.

Accurate characterization of exposure to air pollution from traffic is
also important for environmental epidemiologic studies (Lobdell et al.,
2011; Vette et al., 2013). However, estimating near-road exposure is
challenging because of dynamic traffic conditions, multiple pollutants,
the need to separate near-road and regional pollution, and the spatial
and temporal resolution needed to document pollutants. Traditionally,
field measurements, statistical modeling, and emissions-based air
quality modeling have been used to overcome the challenges and quan-
tify the impact of transportation on air quality. Land-use regression
(LUR) models have also been used to capture spatial variation of
traffic-related pollutants. An example can be seen in Lindstrém et al.
(2013) where data collected from multiple monitors and a line source
dispersion model are combined using a spatio-temporal framework to
estimate ambient concentration. However, conducting a sampling cam-
paign for a large domain in support of LUR modeling would require a
significant number of samplers, which would be costly and time con-
suming. Therefore, although field measurements and statistical models
can provide concentration information with greater certainty and iden-
tify the main contributors to pollutant levels, the spatial resolution and
coverage may be insufficient due to the limited number of available
monitoring devices or the costs associated with them.

Another approach to characterize traffic-related air pollutants is
using emissions-based air quality models. These models can predict pol-
lutant concentrations over a larger domain with arbitrary spatial resolu-
tion by combining emissions data and current knowledge about
physical and chemical processes in the atmosphere. These models can
be categorized as chemical-transport models (Caiazzo et al., 2013),
dispersion models (Lobscheid et al., 2012; Venkatram et al., 2007),
and hybrid models (Isakov et al., 2009; Stein et al., 2007). Compared
with measurement approaches, emissions-based modeling has a great-
er capability to connect emissions from on-road activity to resultant
pollutant level because of its ability to distinguish between source
types during the modeling process. This is critical for implementing mit-
igation strategies. In the U.S., Fann et al. (2013), and Caiazzo et al. (2013)
used detailed chemistry transport models and estimated that mobile
sources are either the second largest sector to cause ozone- and PM; s-
related premature deaths (~29,000 per year) or the largest sector caus-
ing premature deaths due to PM; 5 (53,000 per year) and ozone (5000
per year). Both these studies highlight the growing importance of health
risk due to mobile source emissions. Nevertheless, while these analyses
were able to predict some compelling risk estimates, the relatively
coarse spatial resolutions (36-km x 36-km and 12-km x 12-km)
used in these studies can limit the ability to determine the locations of
specific high-risk areas in population risk assessments (Arunachalam
et al., 2006, 2011). To identify and quantify high-risk areas requires
high-resolution and large-scale modeling, which is computationally

intensive. In addition, quantifying the contribution from a single source
would generally require running the model multiple times, which fur-
ther increases the computational burden.

In our study, we developed a hybrid modeling approach that in-
cludes the Research LINE source dispersion model (R-LINE) (Snyder
et al., 2013) for modeling traffic-related concentrations and ambient
observed data as a source for regional background concentrations at
fine resolution (i.e., at Census-block level) in a computationally efficient
manner (i.e., within minutes). We modified the “bottom-up” strategy
(Cook et al., 2008)—under which the emissions are accurately repre-
sented by each roadway's actual location—to estimate near-road
exposures on a large scale while resolving near-road gradients. The ap-
proach has been evaluated with an explicit simulation (the bottom-up
method) for Portland (Cumberland County), ME, and the model perfor-
mance has been evaluated against a near-road monitoring study in De-
troit, MI, conducted by the EPA and the Federal Highway Administration
(FHWA) (Vallero et al., 2013).

The novelty of our approach, when compared to prior methods, is
the combination of traffic-related contributions using R-LINE with a
spatio-temporal kriging method to obtain background concentrations
before implementing an approach to run only select hours of the year
to compute annual averages (thus providing critical savings in compu-
tational time), while incorporating temporal variability of traffic-
related emissions. We give two illustrative examples that involve apply-
ing the modeling framework in two geographical areas: Cumberland
County, ME, and North Carolina's Piedmont region. Cumberland County
(denoted as CCM) (Fig. 1a) was selected as representative for a midsize
metropolitan area, and the Piedmont region (denoted as NCP) (Fig. 1b),
as representative for a larger domain with both metropolitan and rural
areas included. These two were also chosen to demonstrate contrast be-
tween two regions of the country.

2. Methods
2.1. Modeling framework

The modeling framework is composed of two major components:
On-road concentration (Sections 2.2 and 2.3) and urban background
concentration (Section 2.4). In this approach we assume that modeled
concentrations at selected locations (i.e., Census-block centroids) can
be used to estimate population exposure in support of exposure and
health studies. Therefore, the concentrations from the two components
are estimated at Census-block centroids and the summation of the two
components is the total ambient concentration. Although concentration
fields at parcel level may likely serve as better exposure metric, previous
studies have shown that the difference in mean and maximum concen-
trations between parcel and Census block level only ranges from — 2.4
to 7.1% (Wu et al., 2009; Batterman et al., 2014). The EPA is currently
utilizing Census-block centroids as health risk estimation points in its
residual risk program (U.S. Environmental Protection Agency, 2009),
which allows continuity between studies.

We employed R-LINE (Snyder et al., 2013) to estimate near-road
concentrations, because this model treats roads as line sources and ap-
plies new formulations for horizontal and vertical plume spread
(Venkatram et al., 2013). The transportation data required to estimate
emission includes road networks (individual road segment locations),
traffic activity (number of vehicles for each road segment over a period
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