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a b s t r a c t

Several approximate solutions are derived to predict the concentration polarization effect in a shell-and-
tube Pd-membrane empty separator with permeate flow either in the tube or in the shell. The first two
approximations (Nekhamkina and Sheintuch (2015) [22]) are governed by ODEs describing the axial
profiles of the average variables coupled with algebraic relations that describe the radial profiles of
velocity components and species concentrations. The hydrogen membrane flux is approximated by a
mass transfer coefficient k¼D(∂cH2/∂r)w/(〈cH2〉�cH2w) expressed via the Sherwood number Sh¼kd/D
which is a geometry-dependent parameter (D is hydrogen diffusivity, cH2w¼ p w

ret
H2, /RT is its membrane

wall concentration and d a characteristic length). Here Sh is obtained by 2-D CFD simulations in a wide
range of parameters and when plotted vs the separator length, it reaches an asymptotic value that
matches the predicted values and is independent of operating conditions.

The third approximation reduces the polarization effect to an algebraic equation by approximating
the effectiveness factor η¼[(p w

ret
H2, )0.5�(p per

H2 )0.5]/[〈(p ret
H2 )〉

0.5�(p per
H2 )0.5] which depends mainly on the ratio

of the mass-transfer coefficient to the membrane permeance parameter Γ¼Γ(Sh). This expression can be
used for fast design of separators that avoids or accounts for polarization effects. The three approx-
imations offer a trade-off between accuracy and ease of application.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The permeance of a Pd or Pd-based membrane is the key
parameter in the design of membrane separators and membranes.
With the incorporation of membranes of better permeance and
the integration of heat supply to the reactor through its wall, radial
gradients in membrane reactors may become important. The se-
paration of hydrogen at the membrane wall will cause, in a wide
separator or reactor, its concentration to be different than that in
the bulk, while that of the other species will be larger (con-
centration polarization). That will diminish the hydrogen gradient,
and the effect may be compounded by increased permeance in-
hibition if one of the other species adsorbs well on the membrane.
Many studies have attributed membrane permeance inhibition to
either concentration polarization or to co-adsorption inhibition,
without supporting their conclusion with concrete simulations,
approximations or criteria.

Permeance measurements are usually conducted in empty
(unpacked) shells and tube arrangements, with a hydrogen

mixture in inerts (or in reactants or products). Measurements with
pure hydrogen feed yield directly the permeance, the constant in
Sieverts’ law [1]
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but such values usually differ from those made in a mixture either
due to hydrodynamic effects on diffusive transport or due to co-
adsorption inhibition. We ignore the latter effect here. The impact
of concentration polarization on reducing the apparent constant of
Sieverts’ law, compared with that measured in hydrogen, or its
effect on deviation from the Sieverts’ law was measured experi-
mentally in many separator systems [2–11].

To account for radial gradients in membrane separators or re-
actors with permeable walls several studies have employed 2-D
numerical simulations of mass and momentum balances [2,9–15].
Such studies employ either special software like COMSOL or
FLUENT, or original homemade codes but do not allow to derive a
design criterion predicting when this effect can be ignored. Semi-
empirical approximations using effective mass transfer resistance
to approximate the flux were addressed in Refs. [8,9,11,12,16–21],
expressing it via the Sherwood number (Sh¼kd/D, where k is the
mass transfer coefficient, d is the characteristic length, D – the
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diffusion coefficient). This approach was applied to experimental
results [8] and was also intuitively suggested for model reduction
based on the similarity between the mass and the heat transfer
[11,21]. However, it is not obvious that such an analogy is valid,
because of the different boundary conditions employed in the
separator vs heat exchanger.

Approximate separator models accounting for the polarization
effect were proposed in our recent study [22] for a tube and for an
annular channels. These models are based on uncoupling the
problems of describing the hydrodynamic field and the con-
centration field, assuming a constant total molar concentration
(i.e., constant pressure). The axial velocity profile is approximated
as a product of the averaged velocity 〈u〉 and a known radial
function f(r) defined by the channel geometry (ensuring the ap-
propriate BCs). We used parabolic functions f(r) that ensures in the
case of impermeable walls an exact solution for a tube (Poiseuille
profile) which is also a good approximation for an annular chan-
nel. The radial velocity profile is constructed using the continuity
equation and a prescribed u(r)-profile with the normal wall velo-
city (vw) as a parameter.

The approximate 2-D concentration profiles were constructed
using a known velocity distribution and employing certain as-
sumptions concerning averaging (see [22] for details). Thus, the
approximate solution is governed by the set of ODE equations with
respect to the average variables coupled with algebraic relations to
define the radial profiles. The problem is closed by finding the wall
normal velocity (vw) using the Sieverts’ law.

The proposed approximations allow to define the following:
(i) a mass-transfer coefficient (kapp):
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showing that the apparent Sherwood number (Shapp¼kappd/D) is
only geometry dependent; (ii) a separation parameter Γ which
represents the ratio of diffusive to permeating flux, which for
membrane that follows Sieverts’ law (1) takes a form:

Γ
κ

=
( )

D

d p

Sh
,

3ret

where

κ =
( )

K
c

,
4tot

H2

and κ(pret)0.5 is the characteristic wall normal velocity
Two approximate models were suggested in Ref. [22]: The first

one allows to predict 2D concentration and velocity profiles, the
second one presents its reduced version and allows to predict the
1-D average and the wall profiles of the state variables. These
approximations were verified [22] against published CFD simula-
tions [13,14] conducted with a COMSOL 4.0 version showing a
good agreement; the agreement with experimental result [6] was
poorer due to the erroneous diffusivity value (this will be com-
mented in Section 3).

In the present paper we verify three models vs our own CFD
data, allowing us to enlarge the domain of parameters at will.
These include the two approximations above and a 3rd one that
reduce the problem to an algebraic presentation by accounting for
the polarization effect via the effectiveness factor η:
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expressing the ratio of the actual flux over the flux calculated from
the average concentration. In turn, the effectiveness factor is

dependent on the separation factor η¼η(Γ), as suggested in [23].
In the present work we check its validity and refer to the appro-
priate model as approximation no. 3: Using this approximation
coupled with relation (3) allows to find an analytical solution of
the governing ODE equations and to express the axial average and
the wall concentrations and the transmembrane flux profiles by
algebraic functions.

We focus on the analysis of the Sh(z) and η(z) profiles obtained
by CFD, comparing the former to its predicted value and the latter
to its approximated profile. This offers a rigorous basis for the
approximation by the mass-transfer resistance. The comparison of
the approximated and the exact transmembrane flux profiles va-
lidates the proposed models.

The structure of this paper is the following: the exact and the
approximate models are outlined in the next section. In Section 3
the approximate models are validated by comparison with the CFD
simulations of (i) the Sh(z) and η(z) profiles, (ii) the 2-D velocity
and the concentration fields, (iii) the transmembrane flux profiles.
Finally, in this section the comparison with the experimental data
[6] is presented. In concluding remarks we summarize the ob-
tained results and discuss the proper separator design and the
implementation of the proposed models for reactor simulations.
The results are summarized in a Table.

2. Separator models

In this section we consider an exact and three approximate
separator models of various degrees of complexity: (i) A 2-D
model in a boundary layer approximation (Section 2.1) that is re-
ferred to below as an exact (CFD) one; (ii) A reduced 2-D model in
which the hydrodynamic and the concentration fields are sepa-
rated (Section 2.2) assuming that the total molar density is pre-
served (ctot¼constant). This model was used below to derive in
turn three approximate separator models. The first two models are
briefly described in Section 2.3 where we address the approx-
imations for Sh number and the separation parameter Γ. The third
model is presented in Section 2.4, here we analyze the effective-
ness factor η.

We addressed two axisymmetric geometries (i) A tube with
transport at its wall and (ii) An annular cylinder with transport at
an inner tube; approximate relations for a planar channel are
presented as a limiting case of an annular domain of a finite width
with R-1. For all models the flow is assumed to be isothermal.

2.1. The exact 2-D axisymmetric channel flow model

We employ a 2-D separator model in a boundary layer ap-
proximation, i.e. assuming that (i) the transversal velocity com-
ponent (v) is much smaller than the axial component (u), and that
(ii) the gradients of the velocity components and species con-
centrations in the axial direction are much smaller than those in
the radial direction. These assumptions lead to the governing
equations, similar to those used in the boundary layer (BL) pro-
blem [24] and include the conservation laws of the total mass, the
momentum and the mass fraction of the individual components
coupled with the equation of state; the radial pressure gradient is
negligible:
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