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• Receptor models were applied for the purpose of VOC source apportionment.
• MVA methods were used for forecasting contributions from traffic and industry.
• Forecast was based on inorganic pollutant concentrations and meteorological data.
• Predicted values were consistent with the results of receptor modeling.
• The highest forecast accuracy was achieved with relative error of only 6%.
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In this study, advancedmultivariatemethodswere applied for VOC source apportionment and subsequent short-
term forecast of industrial- and vehicle exhaust-related contributions in Belgrade urban area (Serbia). The VOC
concentrations were measured using PTR-MS, together with inorganic gaseous pollutants (NOx, NO, NO2, SO2,
and CO), PM10, andmeteorological parameters. US EPA PositiveMatrix Factorization and Unmix receptormodels
were applied to the obtained dataset both resolving six source profiles. For the purpose of forecasting industrial-
and vehicle exhaust-related source contributions, differentmultivariatemethodswere employed in two separate
cases, relying onmeteorological data, and onmeteorological data and concentrations of inorganic gaseous pollut-
ants, respectively. The results indicate that Boosted Decision Trees and Multi-Layer Perceptrons were the best
performing methods. According to the results, forecasting accuracy was high (lowest relative error of only 6%),
in particular when the forecast was based on both meteorological parameters and concentrations of inorganic
gaseous pollutants.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Volatile organic compounds (VOC) comprise a diverse group of spe-
cies which are of concern due to their potentially detrimental impact on
humanhealth and the environment. Under sufficiently conducivemete-
orological conditions, they are important precursors in the formation of
ozone, the abundant and reactive gaseous pollutant, capable of inducing
oxidative damage to living cells (Kampa and Castanas, 2008). In addi-
tion, several VOC species such as styrene and benzene have been iden-
tified as toxic or mutagenic, while epidemiological evidence indicates
that repetitive daily or intermittent exposure is associated with

numerous adverse health effects, mainly respiratory and hearth disor-
ders (Musselman and Korfmacher, 2014; Hsieh and Tsai, 2003). As
regards environmental issues, the significant impact of VOC on climate
change is observed in spite of their low concentrations in ambient air,
and arises from their ability to form secondary aerosol and their proper-
ties as greenhouse gases (Chin and Batterman, 2012).

The ubiquity of VOC results from both biogenic and anthropogenic
emissions, whereas the latter often dominate in heavily populated
areas and are associatedwith vehicle transport, industrial activities, fos-
sil fuel refining and distribution, biomass burning, solvent usage, etc.
(Lee et al., 2002; Na et al., 2004). The abundance and spatial distribution
of gaseous pollutants originating from remote emission sources mostly
depend on their atmospheric lifetimes (Jobson et al., 1999), whereas, in
the case of locally generated pollution, this relationship is no longer
sustained, and VOC levels and variability aremainly controlled by emis-
sion rates and meteorological factors (Liu et al., 2012).
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Apart frombeing an important regional traffic hubwith a population
of 1.6 million residents, the capital of Serbia, Belgrade, and its suburban
area is home to network of coal-fired power plants and different indus-
trial facilities, such as the petrochemical complex, chemical plant, and
oil refinery. In such complex urban environments with the prevalence
of local emission sources, meteorological conditions play a significant
role in the VOC mixing and distribution. The methods which simulate
the variations of VOC emissions with sufficient reliability, based solely
on meteorological data, can be used to forecast temporal distribution
of VOC species, which is essential for development of efficient abate-
ment strategies (Liu et al., 2012).

In this study severalmultivariate (MVA)methodswere employed to
assess the impact of traffic- and industry-related sources on VOC levels
in Belgrade urban area, and predict their contribution dynamics. The
petrochemical/chemical industry (PC) and vehicle exhaust emissions
(VE) present one of the most significant emission sources. Their contri-
butions were estimated using widely applied receptor models, Positive
Matrix Factorization (PMF) and Unmix, based on the assumption that,
in a complex VOC mixture, species emitted from the same source are
statistically interrelated (Song et al., 2008). Subsequently, classification
and regression MVA methods were applied in order to predict the
source contribution dynamics on the basis of meteorological dataset
and concentrations of inorganic gaseous pollutants (IG) — NOx, NO,
NO2, SO2 and CO. The supervised learning algorithms for classification
and regression analyses were specifically designed within Toolkit for
Multivariate Analysis (TMVA) (Hoecker et al., 2007) within the ROOT
framework (Brun and Rademakers, 1997), for extensive data processing
in high-energy physics, but their applications are not restricted to these
requirements (Maletić et al., 2014). The best performing MVAmethods
were Boosted Decision Trees (BDT and BDTG), designed for the purpose
of MiniBooNE neutrino experiment (Yang et al., 2005), and based on
complex method of cuts, and Multi-Layer Perceptrons (MLP), based on
artificial neural networks (ANN) (Rojas, 1996).

Nowadays, the forecasting of air pollutant concentrations is an es-
sential issue in environmental research due to a wide range of potential
benefits. Besides providing information for early public warnings to the
susceptible populations, as well as assistance in the assessment of regu-
lation policies, the accurate and reliable forecast could be useful for de-
velopment of preventive approaches and considerable reduction in the
number of measurement sites over the area. This study reveals that pre-
sentedMVAmethods can be successfully used for forecasting the contri-
butions of different emission sources in the investigated area.

2. Materials and methods

The measurement site is located at the Institute of Public Health
in Belgrade (44°49′ N, 20°28′ E), in the urban canyon street with
heavy and slow traffic. Proton Transfer Reaction Mass Spectrometer
(Standard PTR-quad-MS, Ionicon Analytik, GmbH, Austria) was
used for on-line measurements of concentrations of 36 VOC-related
masses in the period from January 22nd to March 24th 2014. A de-
tailed description of the method is given elsewhere (Lindinger
et al., 1998; de Gouw and Warneke, 2007). The inlet of the instru-
ment, 3 m heated (70 °C) silcosteel line inner diameter 3 mm, was
placed 3 m above ground. VOC data, with 0.5 s dwell time, and five
control parameters (m/z 21, m/z 25, m/z 30, m/z 32, and m/z 37)
were obtained in 24 s cycles.

Drift tube parameters included: pressure, ranging from 2.08 to
2.11 mbar; temperature, 60 °C; voltage, 600 V; E/N parameter, 145 Td
providing reaction time of 90 μs. The count rate of H3O+H2O was 1 to
7% of the 5.1 · 106 counts s−1 count rate of primary H3O+ ions. The cal-
ibration was done according to Taipale et al. (2008). For this purpose,
TO-15 Supelco gas mixture (m/z 57, m/z 79, m/z 93, m/z 107, and m/z
121) was diluted with ASGU 370-p HORIBA system zero air to five con-
centrations in the range from 0.5 to 100 ppb. Normalized sensitivities
were in the range from 6.2 to 14.3 npcs ppb−1. Detection limit of 1-h

averaged VOC concentrations was less than 0.5 ppb, except for metha-
nol (2.0 ppb) and acetone (1.1 ppb). Key m/z-signals in the dataset,
identified using a method developed by Galbally et al. (2008), were ob-
served for 29 out of 36 masses, and used for further analysis.

The concentrations of IG, PM10, and meteorological data (atmo-
spheric pressure, temperature, humidity, precipitation, wind speed
and direction) were obtained from the automatic monitoring station
at the measurement site (Institute of Public Health Belgrade).

US EPA Unmix 6.0 (USEPA, 2007) and Positive Matrix Factorization
(Version 3.0) (USEPA, 2008) receptor models were applied to the
1169 observations of 1-hour-averaged concentrations of 29 species in
order to identify emission sources (Table 1). The usages of thesemodels
as well as the theoretical background are detailed in literature (Henry,
2003). Briefly, Unmix is based on an eigenvalue analysis and does not
allow down weighting of individual data points (Henry, 1997), while
PMF decomposes a matrix of ambient data into two matrices
representing source contribution and source profile (Paatero and
Tapper, 1994). A value equal to the half of the method detection limit
(DL) for each variable was used for concentrations below the DL. The
number of pollutants selected as Unmix and PMF input variables was
chosen using a combination of trial and error with the general goal of
maximizing the number of input variables that produced feasible and
physically interpretable solutions and following additional fit diagnos-
tics criteria (Chan et al., 2011). After selecting the base run, 100 boot-
strap runs with R2-value of 0.6 were performed to evaluate the
uncertainty of the PMF resolved profiles. In addition, PMF was run
with different Fpeak values to explore the rotational freedom and re-
ported results were for its value adjusted to 0.2.

Statistical analyses, including bivariate polar plot and bivariate clus-
ter (k-means clustering, grouping similar conditions together) analysis,
were performed with the statistical software environment R (Team,
2012), using the Openair package (Carslaw and Ropkins, 2012). The

Table 1
Basic statistics for measured parameters: VOC related masses [ppb], NOx, NO2, NO,
SO2 [μg m−3], and CO [mg m−3] concentrations.

Parameter Mean Median Min Max 10th 90th St.
dev.

NOx 149.69 121.01 11.24 912.42 37.14 301.52 116.19
NO2 62.94 54.96 8.86 239.09 21.36 115.61 38.17
NO 86.76 58.67 1.19 673.33 11.12 205.61 88.32
CO 0.68 0.59 0.16 3.42 0.36 1.10 0.38
SO2 21.54 17.43 3.85 236.46 7.74 39.94 16.70
Ethylbenzene 2.31 1.76 bDL 36.93 0.37 4.63 2.41
mp-Xylene 8.99 6.86 bDL 124.62 1.41 17.25 9.52
o-Xylene 1.88 1.46 bDL 18.52 0.28 3.79 1.72
m/z 41 (propylene) 1.89 1.66 0.34 19.88 0.80 2.94 1.43
m/z 43 4.87 4.42 1.27 28.40 2.32 7.84 2.52
m/z 45
(acetaldehyde)

5.04 4.29 1.31 38.85 2.28 7.92 3.53

m/z 47 (ethanol) 7.81 3.02 bDL 177.33 bDL 17.39 15.55
m/z 57 (MTBE) 1.94 1.63 0.26 28.82 0.75 2.92 1.93
m/z 59 (acetone) 7.16 5.67 bDL 30.79 1.61 15.57 5.42
m/z 61 (acetic acid) 4.85 4.48 1.36 25.98 2.58 7.24 2.36
m/z 71 0.63 0.58 0.11 5.32 0.29 0.94 0.39
m/z 73 0.87 0.78 0.17 7.89 0.46 1.32 0.52
m/z 75 1.28 0.97 0.26 45.29 0.54 1.80 2.09
m/z 79 (benzene) 1.35 1.10 0.05 6.95 0.50 2.44 0.90
m/z 81 0.81 0.68 0.07 9.88 0.25 1.33 0.78
m/z 83 14.4 10.16 0.37 92.44 3.05 31.65 11.99
m/z 85 9.43 6.73 0.17 65.12 1.96 20.52 7.85
m/z 87 2.53 2.20 0.49 12.36 1.03 4.55 1.48
m/z 93 (toluene) 3.36 2.63 0.19 29.66 1.15 6.11 2.62
m/z 99 0.49 0.43 bDL 2.32 0.17 0.91 0.31
m/z 101 1.25 1.05 0.37 5.34 0.58 2.33 0.71
m/z 105 (styrene) 0.53 0.43 0.11 16.39 0.22 0.76 0.81
m/z 121 (C9
aromatics)

4.32 3.13 0.28 24.96 1.19 8.59 3.88

m/z 137
(monoterpenes)

0.89 0.65 bDL 8.50 0.19 1.67 0.90

DL— detection limit.
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