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a b s t r a c t

Two-dimensional (2D) layered porous materials are of a considerable interest to researchers due to
differences in the sizes of in-plane and out-of-plane confinement. These layered materials have been
blended with polymers for the fabrication of mixed-matrix membranes (MMMs) for applications in-
volving separation. The polymers in MMMs serve as a matrix and the 2D layered materials serve as filler
used to enhance the separation performance (diffusivity and selectivity) of the polymeric matrix. Un-
fortunately, the existing models for estimating the effective diffusivity of MMMs with layered fillers are
unable to provide reliable predictions. This study proposed a numerical approach to the estimation of
effective diffusivity and the selectivity of MMMs using layered fillers based on the mass transfer simu-
lations. In the proposed models, we took into account two critical parameters of the layered fillers:
anisotropic diffusivity and orientation distributions. The predictive ability of the proposed approach was
evaluated via comparison with experimental data. Finally, we outline the design of highly selective
MMMs with layered porous materials based on the proposed methodology.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Layered microporous nanomaterials have attracted consider-
able interest from researchers due to their two-dimensional (2D)
structure [1–4]. Layered zeolites and other layered clay materials
have been widely applied in catalysis and the fabrication of na-
nocomposites [5–9]. Zeolitic imidazole frameworks (ZIFs) are an
emerging class of microporous material, and a layered ZIF, ZIF-L
has been recently reported [10–12]. Like other microporous ma-
terials, layered microporous nanomaterials can be used in mole-
cular separation. One common means of applying these nanoma-
terials to the process of separation involves blending them with
polymers to form composite membranes [13–20]. These nano-
composite membranes are commonly referred to as mixed-matrix
membranes (MMMs) using polymeric materials as the matrix and
nanoporous materials as the filler [2,21–30]. In the initial devel-
opment of MMMs, only nearly spherical microporous materials
were used as fillers [26,31]. In recent years, low-dimensional (1D
and 2D) porous materials, such as nanotubes (1D) [32–35] and
layered porous materials (2D) [36–38], have been regarded as
emerging filler materials. Layered porous materials could poten-
tially outperform near-spherical ones for use as filler in MMMs, for

two reasons. First, the high aspect ratio of layered materials in the
MMMs enables control over the orientation. Second, cross-plane
and in-plane confinement in the layered porous materials usually
differs in size, which leads to anisotropic diffusivity in the layered
microporous materials. For example, MCM-22 [39,40] and AMH-3
[41,42] are known to have cross-plane pores smaller than in-plane
confinement. The controllable orientation and anisotropic diffu-
sivity caused by differences in the in-plane and cross-plane con-
finement of the layered porous materials are unique features
capable of maximizing the effective diffusivity and selectivity of
MMMs. MMMs with graphene-based fillers have recently been
shown to have extraordinarily high permeability and selectivity
[43–47].

Diffusivity and selectivity are the most critical factors in eval-
uating the performance of MMMs. The diffusive selectivity is de-
fined as the ratio of diffusivity between two transported species. In
the case of spherical fillers with isotropic diffusivity, effective
diffusivity can be estimated analytically using the Maxwell model
[27,48,49]:
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where Deff is the effective diffusivity, Df and Dm are the intrinsic
diffusivity of the filler and matrix, respectively, and Φf is the vo-
lume fraction of the filler material. Analytical models of MMMs
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with tubular [50] or layered [51–53] fillers have also been pro-
posed. For example, the Cussler model takes into account the as-
pect ratio of the layered fillers:
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where α represents the aspect ratio; i.e., the ratio of the in-plane
diameter and thickness of the fillers. However, derivation of ana-
lytic models usually involves assumptions, which tend to over-
simplify the system and thereby reduce the accuracy of the pre-
dictions related to diffusivity. For example, significant disagree-
ments have been observed between experiment measurements
and the predictions of Deff by the Cussler model when dealing with
MMMs comprising cellulose acetate as a matrix and AMH-3 as a
filler [54].

Numerical methods based on mass transport simulations have
been developed to address this issue [55–61]. In the case of MMMs
with layered fillers, numerical methods have been developed to
investigate the effects of aspect ratio [58], filler shape (e.g., cir-
cular, square, hexagonal) [59], and filler orientation [55–57] on the
Deff of MMMs. Although these studies take into account details of
the layered fillers related to morphology and orientation, the key
feature of the layered porous materials (anisotropic diffusivity) is
not included in the mass transport simulations. In other words,
isotropic diffusivity is used to describe mass transfer in the fillers,
which can lead to highly erroneous predictions related to the Deff

of MMMs comprising layered porous fillers. In fact, few of the
aforementioned reports have opted to compare their predicted Deff

values with experiment-derived results, and what comparisons
are available reveal considerable disagreement between the cal-
culated and measured Deff values [56].

In this study, we developed a simulation of the mass transfer of
MMMs with layered fillers, which also takes into consideration
anisotropy in the diffusivity of the filler. A second order tensor was
used to describe anisotropy in the diffusivity of the layered fillers,
as follows:
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where Df
⇀⇀ is the tensor form of the filler diffusivity, in which the

component Df,ij represents the ability of the filler to cause molar
flux in the i-direction under a concentration gradient in the j-di-
rection. For fillers with anisotropic diffusivity, Fick's law of diffu-
sion can be written as follows:

J D C 4f
⇀ = − ⇀⇀⋅ ∇⇀ ( )

where J⇀ is the flux vector of the transported species and C∇⇀ is the
concentration gradient vector of the transported species. For fillers
with isotropic diffusivity, the non-diagonal component of the dif-
fusivity tensor is zero and all three diagonal terms are identical. In

this case, the diffusivity tensor Df
⇀⇀ can be reduced to a scalar Df,

deduced from Fick's law of diffusion as follows:
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We also investigated how anisotropy in the diffusivity of the
filler influenced the Deff of MMMs with layered porous fillers. Our

results were compared with predictions obtained using the Max-
well and Cussler models, as well as previously reported experi-
ment data. More importantly, we outline the means by which to
take advantage of anisotropy in the diffusivity of the layered
porous fillers for the design of high-performance MMMs (i.e.,
MMMS with high effective diffusivity and high selectivity).

2. Computational methods

2.1. Construction of mixed-matrix membrane model

We developed an algorithm for the creation of models de-
scribing MMMs with layered fillers under various filler volume
fractions (Fig. 1a). The location of each filler within the matrix was
randomly assigned using the Monte Carlo method. The tilt angle
between the tilted filler and direction of bulk mass transfer (z-
direction) is denoted by φ (φ ranges from 0 to π/2), as shown in
Fig. 1b. When an MMM model was first created, the φ of each filler
was set to zero; i.e., the matrix and all fillers were oriented in the
same direction. Another algorithm based upon the Monte Carlo
method was used to randomly assign a non-zero value φ for every
filler. Due to spatial restrictions, fillers in MMM models with low
filler volume fraction generally possess higher φ values. The MMM
models constructed using the abovementioned method were then
used for the mass transfer simulations outlined in the following
section.

2.2. Mass transfer simulations

Fick's law of diffusion (Eq. (4)) was used to describe mass
transfer in the MMMs with layered porous fillers. The cross-plane
vector of the MMM models was aligned with the z-axis, such that
the bulk mass transfer of the MMMs was in the z-direction. The
diffusivity of the matrix was assumed to be isotropic. In ac-
cordance with Eq. (5), only a single value was required to describe
isotropic diffusivity in the matrix phase. Because fillers in this
study were permitted anisotropic diffusivity, a second tensor Eq.
(3) was also required to describe diffusivity. In the case of layered
fillers with the out-of-plane vector aligned with the z-axis (i.e. φ
¼ 0), the diffusivity tensor can be expressed as follows:
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where Df,in represents the in-plane diffusivity and Df,out represents
out-of-plane diffusivity of the layered filler (Fig. 1c). In the case of
layered fillers rotated along the x-axis with a rotation angle θx,
diffusivity is represented as follows:
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In the case of layered fillers rotated along the y- or z-axis with a
rotation angle θy or θz, deducing the diffusivity tensor after rota-
tion is analogous to Eq. (7), in which the rotation matrix is used for
y- or z-axis rotation, respectively (Fig. 1d).

2.3. Numerical methods and post-processing of solutions

This study employed finite element analysis (FEA) to solve
Fick's diffusion equation in order to obtain concentration profiles
for the MMM models. In this work, FEA was implemented using
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