Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Enhancement of farmland greenhouse gas emissions from leakage of stored CO₂: Simulation of leaked CO₂ from CCS

Xueyan Zhang ^a, Xin Ma ^{b,c,*}, Yang Wu ^d, Yue Li ^{b,c}

^a Chinese Academy of Meteorological Sciences, Beijing 100-081, China

^b Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China

^c Laboratory of Agricultural Environment and Climate Change, Ministry of Agriculture, Beijing 100-081, China

^d Engineering Consulting Centre, China Meteorological Administration, Beijing 100-081, China

HIGHLIGHTS

• Relationship between CO₂ leakage and CH₄ and N₂O emissions was examined.

• Geologically stored CO₂ leaking into surface soil enhances CH₄ and N₂O emissions.

• GWP of additional CH₄ and N₂O is negligible compared with amount of leaked CO₂.

• Significant increase of CH₄ and N₂O emissions from soil could indicate CCS leakage.

ARTICLE INFO

Article history: Received 26 September 2014 Received in revised form 15 February 2015 Accepted 16 February 2015 Available online 5 March 2015

Editor: Simon Pollard

Keywords: CCS Leaked CO₂ CH₄ N₂O GHG emission Global warming potential

ABSTRACT

The effects of leaked CO_2 on plant and soil constitute a key objective of carbon capture and storage (CCS) safety. The effects of leaked CO_2 on trace soil gas (e.g., methane (CH₄) and nitrous oxide (N₂O) emissions in farmlands are not well-understood. This study simulated the effects of elevated soil CO_2 on CH₄ and N₂O through pot experiments. The results revealed that significant increases of CH₄ and N₂O emissions were induced by the simulated CO_2 leakages; the emission rates of CH₄ and N₂O were substantial, reaching about 222 and 48 times than that of the control, respectively. The absolute global warming potentials (GWPs) of the additional CH₄ and N₂O are considerable, but the cumulative GWPs of the additional CH₄ and N₂O only accounted for 0.03% and 0.06%, respectively, of the cumulative amount of leaked CO₂ under high leakage conditions. The results demonstrate that leakage from CCS projects may lead to additional greenhouse gas emissions from soil; however, in general, the amount of additional CH₄ and N₂O emissions is negligible when compared with the amount of leaked CO₂.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Carbon capture and storage (CCS) technology may be strategically important for mitigating global greenhouse gas (GHG) emissions (IPCC, 2005). CCS is particularly important for coal-based GHG emitters, such as China (Sun, 2006; Li et al., 2011). Preliminary estimates show that the CO₂ storage capacity in China is in the hundreds of billions of tons. Moreover, more than 12 demonstration projects have been established over the past few years (Zhang et al., 2013). Naturally, one of the key concerns associated with CCS is CO₂ escaping from the deep geological storage formation (Lions et al., 2014) and adversely

E-mail address: max@ami.ac.cn (X. Ma).

impacting the environment (Damen et al., 2006; Beaubien et al., 2008; Noble et al., 2012).

Agriculture accounts for 52% and 84% of global anthropogenic CH_4 and N_2O emissions, respectively. CH_4 is produced when organic materials decompose in oxygen-deprived conditions and N_2O is generated by the microbial transformation of nitrogen in soil (Smith et al., 2008). Traditionally, CH_4 and N_2O emissions are linked to cropland management and cultivated organic soils. CO_2 leakage is also thought to have an effect on CH_4 and N_2O emissions. Leaked CO_2 eventually enters the atmosphere through the soil, leading to locally high soil CO_2 concentrations (Zhou et al., 2012). However, relatively little is known on the effects of leaked CO_2 on CH_4 and N_2O emissions in farmlands. There are no signs of CO_2 and CH_4 leakage reported from the continuous monitoring of CCS projects (Beaubien et al., 2013). Nevertheless, several studies have focused on the effects of elevated soil CO_2 on CH_4 and

^{*} Corresponding author at: Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China.

N₂O emissions. Krüger et al. (2011) collected CH₄ measurements at a vegetated pasture field in the Laacher See volcanic center in Germany. CH₄ production rates of 0.33 \pm 0.007 µmol CH₄ g_{dw}⁻¹ day⁻¹ were reported at the vent center, with a soil CO₂ flux of more than 550 g^{-2} days⁻¹. These rates were much higher than those found in the control site samples with values of 0.12 \pm 0.002 µmol CH₄ g_{dw}⁻¹ day⁻¹, where the soil CO_2 flux dropped to about 50 g⁻² days⁻¹. Ziogou et al. (2013) found CH₄ production rates of 0.016 μ mol CH₄ g_{dw}^{-1} day⁻¹ at the CO₂ vent $(100\% CO_2)$, which was three times higher than those at a medium site with 10% CO₂. Additionally, no CH₄ production could be detected at the reference site (<0.9% CO₂) of a natural CO₂ vent in a pasture in the Florina Basin in Greece. Furthermore, the effects of CO₂ flux on soil CH₄ were spatially restricted. Šibanc et al. (2014) showed a shift towards methanomicrobia dominated communities under elevated soil CO₂ concentrations and recorded traces of CH₄ in soil with high CO₂ concentrations. In contrast, at the Latera geochemical field in central Italy, Beaubien et al. (2008) found that the CH₄ production rate at the background site was 2.34 \pm 0.35 nmol CH₄ g_{dw} soil^{-1} day^{-1}, which was three times higher than the vent core (0.79 ± 0.13 nmol; high CO_2 and H_2S) and eight times higher than the transition zone (0.29 \pm 0.03 nmol; high CO₂ but no H₂S). Evidently, elevated soil CO₂ is a vital factor in CH₄ and N₂O production. However, it is difficult to understand and compare these trends, owing to the contrasting results from natural analogies and the considerable environmental difference among the test sites.

In this paper, the effects of elevated soil CO_2 on CH_4 and N_2O were examined through pot experiments, which simulated the CO_2 fluxes from common to extreme leakage conditions. The specific objective was to test the hypothesis that leaked CO_2 induces additional CH_4 and N_2O emissions in farmlands and contributes to global warming.

2. Data and experimental design

2.1. Location and experimental timeline

The experiment was performed at the Experimental Station of the Chinese Academy of Agricultural Sciences, located in Beijing (39° 57' 30″ N, 116° 19′ 43″ E). The average annual conditions are temperatures of 11–12 °C and rainfall of 640 mm. The annual sunshine hours range from 2000 to 2800 h with a frost-free period of 190–195 days and wind speed of 1.8–3.0 m·s⁻¹. The region has a temperate, semi-humid monsoon climate (Wu et al., 2012). The experiment was conducted from Aug. 12th to Oct. 25th 2010 (75 days). CO₂ was injected continuously from September 12th 2010 to the end of the experimental period, in order to reproduce a constant leak (Fig. 1).

2.2. Pot experiments for simulated CO₂ leakage

The pot experiments were designed using accumulationchamber measurements (Wu et al., 2012) to simulate a simple ecosystem. They consisted of a controlled CO_2 release device; a set of CO_2 , CH_4 , and N_2O flux monitoring/recording instruments; and a management system. The principles and compositions of the experiments, used to assess the impact of CO_2 leakage on CH_4 and N_2O emissions, were as follows:

- (i) Planting and management. The maize hybrid (Jingkenuo 2000) was selected for this study. Maize was seeded on Aug. 12th 2010 and seedlings were singled out at the three-leaf stage, leaving one seedling per pot. The soil type used was cinnamon soil (0–20 cm, equivalent to Ustalf in the US soil classification system) (Stoner and Baumgardner, 1981); it was composed of clay (31.6%), silt (46.1%), sand (19.3), and gravel (3.0%). The physical and chemical characteristics of the soil are listed in Table 1. All the treatments included the application of water and fertilizers in a manner similar to the common agronomic practices in Beijing (Huang et al., 2001) (Table 2).
- (ii) Controlled CO₂ release device. The device used to manually control the release of CO₂ consisted of experimental pots (soil chamber, permeable separator, and CO₂ gas chamber), gas duct, ball valve, gas shunt, CO₂ gas source, gas meter, and drain valve (Fig. 1). The pots used were made of 10 mm thick plastic, the gas duct was made of 3 mm soft plastic pipe, and the CO₂ source gas was supplied using a steel gas bottle filled with standard CO₂ (50 kg, 15 MP, 99.5%). Drain valves used to remove excess irrigation water were made of steel. The total irrigation water applied during the experimental period was $26 L \text{ pot}^{-1}$, no irrigating water was drained. The soil chamber was 33 cm in height, 40 cm in diameter at the upper portion, and 36 cm in diameter at the lower portion. The CO₂ gas chamber was 17 cm in height, 36 cm in diameter at the upper opening, and 33 cm in diameter at the lower portion. A gas permeable separator was placed between the soil and gas chambers. The CO₂ injected into the gas chamber passed through the permeable separator and moved upward until it was released from the near-surface.
- (iii) CO_2 leakage treatment setting. The CO₂ injection flux (hereafter referred to as flux) was used as a key indicator of leakage. According to the literature, the fluxes of common natural CO₂ seepages are 1000–3000 g·m⁻²·d⁻¹ (Beaubien et al., 2008; West et al., 2009). However, the highest recorded CO₂ flux

Fig. 1. Design of pot experiment for simulation of CO₂ leakage. The CO₂ injection flux was controlled at six different values; (a) experimental pots, (b) sampling cylinder.

Download English Version:

https://daneshyari.com/en/article/6326821

Download Persian Version:

https://daneshyari.com/article/6326821

Daneshyari.com