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a b s t r a c t

Light–matter interactions are commonly described and studied in static systems for which molecular
changes do not occur dynamically. Matter–matter interactions on the other hand are described in-
dependently from the light interaction phenomena. There is a need for a holistic approach that considers
both. Holographic sensors are photonic structures built into polymer film composites that react to mo-
lecular interactions with analytes, showing changes in reflectivity and wavelength. These systems are
attractive for sensor applications, not only because they easily read by color changes, but also because the
light diffraction phenomena are directly related to intermolecular interactions. Here, we describe a
theoretical model that couples photonic and molecular mixing phenomena, and demonstrate its ex-
perimental validation for holographic sensor systems.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Hybrid nanomaterials and polymer composites have been
proposed to improve the physical properties of future product
building blocks [1–3]. Understanding the phenomena of molecular
interactions, together with the improved physical properties, is
paramount for designing novel product components. New hybrid
nano-constructions in polymeric membranes are continuously
reported in the scientific literature for applications in emerging
technologies such as fuel-cells, membrane barriers, and sensor
elements [4,2,5]. Sensor technologies, in particular, benefit from
these hybrid polymer nano-composite materials because of their
enhanced molecular selectivity. Recently, holographic sensors for
gaseous hydrocarbons and volatile organic compounds (VOCs)
have been demonstrated in poly(dimethylsiloxane) (PDMS)–silver
nanoparticle composite films [5,6]. The fabrication of these sensors
consists of in situ formation of silver nanoparticles by perfusion
into the elastomer films, followed by laser ablation for patterning
[5]. The sensor response is driven by the number of molecules in
the sensor matrix at a certain point in time. Molecular interactions
cause the physical deformation of the polymer chains, which ul-
timately leads to changes in geometry and optical properties of the
patterned layers of material. All these chemical and physical in-
teractions are governed by molecular surface interactions at the
nanoscale, which can be modeled mathematically [1]. In the

particular case of holographic sensors, the photonic phenomena
are well understood and it has been theoretically described using
various modeling methodologies [4,7–14]. However, a theoretical
model that considers both, photonic effects and complex diffusion,
has not been proposed for these systems until now.

Molecular transport into the polymer matrix is governed by
diffusion, which becomes anomalous in the presence of nano-
particles. It has been shown that interactions between the diffu-
sant, the polymer, and the nanoparticles affect this process [2].
Therefore, diffusion models coupled with rheology have been
proposed for modeling these complex processes in polymeric
membranes [3]. Extensions of these models account for swelling,
consider microscopic (kinetic) and mesoscopic (thermodynamic)
levels, energy of mixing, molecular polymer structure conforma-
tions, and interfacial interactions [1–3,15]. There are certainly
other works that further extend these models to consider con-
formations and deformations [16,17], or even to molecular dy-
namics simulations for transport processes but in other type of
systems [18]. In this work, diffusion, swelling, mixing, and changes
in optical diffraction are discussed as elements of an integrated
theoretical model.

Holographic sensor models: Empirical models that relate mole-
cular interactions to wavelength changes in holographic sensors
have been proposed previously [5]. These models attempt to ex-
plain analyte–sensor interactions via experimental observations of
the diffracted light wavelength in relation to known physico-
chemical properties. For example, the cohesive energy density, δ2,
correlates to the total wavelength shift in holographic sensors for
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VOCs and gaseous hydrocarbons [5]. In this model the wavelength
shift at equilibrium, λΔ , relates to δ as

. 1δ β λ= (Δ ) ( )α

where β is related to δ and to the type of penetrant, α is positive
for penetrants with values of δ lower than that of the polymer, and
negative for larger values. The cohesive energy density is related to
the free energy of mixing Gm(Δ ) via the Flory–Huggins interaction
parameter 1,2χ( ), which accounts for polymer–solvent interactions
and polymer molecular conformations (Ω)

G k RT N ln , 2m B 1,2 1 2χ υ ΩΔ = ( − ) ( )

where kB is Boltzmann's constant, N1 the number of penetrant
molecules, υ2 the volume fraction of the polymer in the mixture, R
the gas constant, and T the temperature. 1,2χ is related to δ as
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where Vt is the total volume of the mixture and δ1 and δ2 indicate
solvent and polymer values respectively. Therefore, the sensor
response is related to the strength of the molecular interactions.

Changes in the photonic properties of the sensor are known as
the holographic response, and are caused by the swelling of the
films or by a change in the effective refractive index of the layer,
which in turn cause light diffraction to change due to the in-
creased separation between the layers [5]. Even though these
conclusions hold true experimentally, ultimately a theoretical
model that considers all underlying phenomena is required, i.e.
molecular interactions, complex diffusion, and light diffraction.
Here, we propose an integrated photonic-diffusion model for the
holographic sensor response with applicability to any photonic
multilayered sensor system.

2. Theoretical model

Diffusion: Liu and De Kee [2] proposed a mass transport model
suitable for non-Fickian behavior in polymer nanocomposite
membranes with complex interfaces. The model considers free
energy of mixing and concentration changes, and describes the
viscoelasticity of the system under moderate swelling. It consists
of a set of equations that describe the time evolution of the solvent
mass concentration and structural variables for the polymer in-
ternal structure and its complex interface. A set of variables are
used to account for different phenomena: an area tensor A, related
to the rheological properties of immiscible blends, a conformation
tensor m, the mass flux of the solvent Js, the mass fraction of the
solvent in the mixture c, and tensors E and Λ which relate the
elastic part and interfacial interactions to the mixing part of the
free energy [2]. In the model, the mass fraction is defined in terms
of the apparent mass densities of the polymer and penetrant as

c / / , 4s s N sρ ρ ρ ρ ρ= ( + ) = ( )

where ρs and ρN are the apparent mass densities of the solvent
and composite respectively. For a one-dimensional diffusion pro-
cess for randomly oriented nanoparticles, and the time evolution
of the A component in the direction of permeation (i.e. A11, E11,
m11, Λ11), the model becomes
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where ceq is the solvent concentration at equilibrium, and the di-
mensionless parameters are defined as
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for which L0 is the membrane thickness at time zero, D the dif-
fusion coefficient, t time, L the membrane thickness, x the La-
grangian coordinate, K a characteristic elastic constant, λt a char-
acteristic length also used as a striation thickness, Γ1 the inter-
action parameter between nanoparticles and solvent, mλ and A

1111λ
are two non-negative parameters [2,1], and G n k TB0 0= is the
modulus of elasticity with n0 being the elastic density of the dry
composite.

Four dimensionless parametersΠ, Dem,Θ and DeA describe the
system: Π relates the mixing properties of the components and
the polymer elasticity, Θ relates the complex interface with the
mixing properties, Dem is a Deborah number related to the poly-
mer relaxation defined by the ratio of the elastic and diffusion
times, and DeA a Deborah number for the time of interface re-
laxation defined by the ratio of the diffusion and interface re-
laxation times. DeA and Dem indicate how fast the polymer chains
and complex interface react to changes. Overall, these four num-
bers determine how important are the polymer viscoelastic
properties and the complex interface in the diffusion process, and
describe whether the complex system deviates from Fickian dif-
fusion [2,1,3].

Photonic: Holographic sensors are commonly polymer–nano-
particle composite films containing multilayered structures con-
sisting of alternating refractive index values. There are, however,
other non-nanoparticle based holographic sensors based on pho-
tosensitive polymer films. The photonic properties on either sys-
tems can be modeled using the Bloch theorem for the exact so-
lution of Maxwell's equations in the periodic form [4], assuming
the layers to be well-defined periodic structures with different
refractive index values. A matrix formalism has been proposed by
Yeh [19], in which the wavelength and the intensity of the dif-
fracted light can be calculated by
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where q is the number of layers, I, R and τ are the amplitudes of
the incident, reflected and transmitted waves respectively, and W,
X, Y and Z take different forms for TE and TM waves as
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