
Assessing uncertainty in pollutant wash-off modelling via
model validation

Khaled Haddad a, Prasanna Egodawatta b, Ataur Rahman a, Ashantha Goonetilleke b,⁎
a School of Computing, Engineering and Mathematics, University of Western Sydney, Building XB, Locked Bag 1797, Penrith, NSW 2751, Australia
b Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane 4001, Australia

H I G H L I G H T S

• Assessing uncertainty in water quality modelling is important but rarely undertaken.
• Uncertainty assessment enhances stormwater management decision making.
• Monte Carlo cross validation applied for assessing uncertainty in modelling
• MCCV is likely to result in a more realistic measure of model coefficients than LOO.
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Stormwater pollution is linked to stream ecosystem degradation. In predicting stormwater pollution, various
types of modelling techniques are adopted. The accuracy of predictions provided by these models depends on
the data quality, appropriate estimation of model parameters, and the validation undertaken. It is well under-
stood that available water quality datasets in urban areas span only relatively short time scales unlike water
quantity data, which limits the applicability of the developed models in engineering and ecological assessment
of urbanwaterways. This paper presents the application of leave-one-out (LOO) andMonte Carlo cross validation
(MCCV) procedures in aMonte Carlo framework for the validation and estimation of uncertainty associatedwith
pollutantwash-offwhenmodels are developed using a limited dataset. It was found that the application ofMCCV
is likely to result in a more realistic measure of model coefficients than LOO. Most importantly, MCCV and LOO
were found to be effective in model validation when dealing with a small sample size which hinders detailed
model validation and can undermine the effectiveness of stormwater quality management strategies.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Stormwater pollution is a primary non-point pollution source of
concern, and is linked to stream ecosystem degradation (Walsh et al.,
2004; Cizek and Hunt, 2013). Estimation of stormwater pollutant
loads and/or concentrations is a pre-requisite for effective decision-
making for the protection of receiving water environments. Various
types of models are used in estimating stormwater pollutant wash-off
loadings (Zhang et al., 2010; Kotti et al., 2013; Chen et al., 2014),
which are then used to restore and improve the ecology of urbanwater-
ways through appropriate management interventions. However, the
accuracy of the predictions provided by various models is dependent
on the appropriate estimation of model parameters, which has not
received appreciable research attention in the past.

The development of stormwater quality models still faces many
challenges which can be primarily attributed to the complexities in pol-
lutant processes due to stereotyping of site characteristics and the inad-
equacy of the datasets available. As reported by Zhang et al. (2007,
2008), stormwater pollution is affected by a range of land use, catch-
ment and rainfall characteristics. The key issues relating to inadequate
datasets are their subjectivity to spatial scales, high variability and avail-
ability over relatively short time scales (Kanso et al., 2006) unlike in the
case of water quantity data (Haddad et al., 2010; van der Sterren et al.,
2012). Past research has shown that the heterogeneity of the system
characteristics can vary over space and time scales and are typically
not known with great accuracy (UNESCO, 2005; Smith et al., 1997).
Consequently, water qualitymodelling outcomes are not highly reliable
as these are constraints which inhibit taking due consideration of the
variability associated with pollutant processes and natural phenomena
(Stewart, 2000). The establishment of more reliable models may be
achieved if more comprehensive datasets are used. However, due to
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the high cost associated with water quality data collection, such
datasets are usually scarce.

Consequently, it is well known that all modelling approaches are
subject to various forms of uncertainty (Zoppou, 2001; Nix, 1994). The
main three sources of uncertainty are: i) data uncertainty— uncertainty
associated with model input which is the data used to calibrate the
model; ii) parameter uncertainty — uncertainty associated with the
model parameters which arises from the method used to estimate
those parameters; and iii) model structure uncertainty — uncertainty
arising from the incomplete conceptual understanding of the systems
under study which can be attributed to the reliance on models that
are simplified representations of the true complexities of natural pro-
cesses (Willems, 2008; Refsgaard et al., 2006, 2007; Freni et al., 2009).

Therefore, uncertainty analysis is an essential requirement for eval-
uating model reliability (Freni et al., 2009). A range of studies have
focused on assessing uncertainty resulting from input data and mea-
surements (for example, Sohrabi et al., 2003; Kanso et al., 2003, 2005;
Kuczera et al., 2006; Bertrand-Krajewski, 2007; Haydon and Deletic,
2009; Freni et al., 2009; Wang et al., 2009; Franceschini and Tsai,
2010; Liu et al., 2012a, 2012b; Haddad et al., 2013a). Themethodologies
for uncertainty analysis discussed in the literature are accepted as stan-
dard in the water quality modelling area. The methods range from clas-
sical statistical analysis to Bayesian inference techniques. However,
these uncertainty analysis methods agree on representing uncertainty
by giving a range of values or a probability distribution that are most
likely to cover the possible true value of a specific simulated value.
Past studies have focused on assessing both, the overall modelling un-
certainty and the uncertainty associated with modelling specific pollut-
ant processes such as pollutant build-up and wash-off by using a range
of routingmethods. This provides only a dimension of understanding of
the accuracy of stormwater quality models for replicating pollutant
processes.

As the study discussed in the paper has employed statistical
methods, a discussion on statistical models is relevant to provide con-
text. Statistical models that have been used for estimating stormwater
runoff quantity and quality are generally based on regression models
which are considered to be a stochastic modelling approach. Regression
models that are commonly used include simple linear, multiple linear,
nonlinear semi-log and log–log transforms. Examples of statistical
models used in water quality modelling can be found in Driver and
Tasker (1988), Egodawatta et al. (2012) and Haddad et al. (2013a). It
has been recognised that linear regression under certain conditions is
not well suited for modelling water quality data (Jewell and Adrian,
1981; Zoppou, 2001; Haddad et al., 2013a). A fundamental limitation
in the statistical relationship developed is often due to the very limited
dataset used, the high level of error associated with the dataset and the
fact the dataset itself only reflects a specific spatial arrangement
(Zoppou, 2001). In the event of a different spatial setup and process,
the regression relationships may need to be re-formulated based on
the new data.

Some of the limitations in regression approaches discussed above
can be overcome through the use of model validation techniques such
as leave-one-out (LOO) and Monte Carlo cross validation (MCCV)
(Song Xu et al., 2005). In LOO, one data point is left out while building
a regressionmodel (or other form of model) and then themodel is test-
ed on the previously left out data point. The procedure is repeated until
all the data points are independently tested. In the case of MCCV, the
technique leaves out a notable part of the sample at a time during
model building and validation and repeats the procedure many times.
MCCVmay bemore desirable in uncertainty estimation of water quality
models as it evaluates the differentmodels according to their predictive
ability using different combinations of validation datasets.

LOO and MCCV presented in this paper were carried out differently
to the classical approach commonly used, which is based on determin-
ing a suitable model from many candidate models (Haddad et al,
2013b). The aim of LOO and MCCV applied in this study was to assess

the uncertainty in water quality models in practical situations through
validating different combinations of data, reflecting coefficient estima-
tion uncertainty. LOO and MCCV are able to overcome the limitations
of small datasets making the interpretation of uncertainty associated
with water-quality models more reliable.

This paper has three primary objectives: (i) demonstration of the ap-
plication of MCCV method in water quality modelling using regression
analysis; (ii) comparison of MCCV with the most commonly used LOO
validation technique for assessing the overall uncertainty of the devel-
oped regression equation; and (iii) demonstration of the best use of
the limited datasets which are commonly encountered in water quality
modelling and can hinder the detailed validation of water quality
regression models.

2. Materials and methods

2.1. Data collection

This research study used roof wash-off data collected at a number of
sites located in South East Queensland, Australia. Egodawatta et al.
(2009) have confirmed that the pollutant wash-off process for road
and roof surfaces, which are the primary impervious surfaces in an
urban catchment are similar and the differences due to surface charac-
teristics can be replicated using different coefficients. Therefore, re-
search outcomes derived for roof surfaces is easily extendable to road
surfaces. Furthermore, in an urban catchment, the total roof area can
be 2–3 times greater than the total road area (Egodawatta et al.,
2012). Also, understanding of pollutant processes on roof surfaces is im-
portant as rainwater harvesting is being increasingly considered as an
alternative water source particularly in water deficient regions.

The pollutant wash-off samples were collected from model roofs of
3 m2 area used as test plots. This approach eliminated the possible het-
erogeneity in pollutant distribution and the practical difficulties of
collecting pollutant wash-off samples from actual roof surfaces. The
model roofs were mounted on a scissor lift arrangement as shown
in Fig. 1. The roofs were raised to the typical roofing height to enable
pollutant build-up under natural conditions and then lowered to
ground level for wash-off sample collection using a rainfall simula-
tor. Two roofing products, corrugated steel and concrete tiles were
used for cladding as these are the most widely used roofing mate-
rials in the study region. Further details of wash-off sample collec-
tion are presented in Egodawatta et al. (2009).

A specially designed rainfall simulatorwas used to simulate the rain-
fall events on the model roof surfaces. The simulator was designed to
replicate natural rainfall events as closely as possible in relation to rain-
fall drop size distribution and kinetic energy of rain dropswhich are the
key rainfall characteristics which influence pollutant wash-off. Details
on the design and operation of the rainfall simulator can be found in
Herngren et al. (2005). For sample collection, the rainfall simulator
was positioned over the lowered model roofs and subjected to pre-
determined rainfall intensities as shown in Fig. 1. Rainfall intensities of
20, 40, 86 and 115 mm/h were simulated on the roof surfaces. For
each simulation, runoff samples were collected for a range of different
durations to match design storms of specific Average Recurrent Inter-
vals (ARI). Altogether, 46 runoff samples were collected representing
four rainfall intensities for the two types of roof claddingmaterials, con-
crete tiles and corrugated steel. The sample collections were conducted
on a weekly basis. Egodawatta et al. (2013) have shown that an appre-
ciable amount of pollutant build-up will occur on a roof surface over a
7 day antecedent dry period.

2.2. Laboratory analysis

Samples collected were transported to the laboratory for testing,
with sample handling and preservation undertaken according to AS/
NZS (1998). Samples were tested for total suspended solids (TSS) as
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