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H I G H L I G H T S

• Structural equation modeling was used to evaluate variable interactions with fish Hg.
• Modeling was conducted using data from Florida lakes, streams, and the Everglades.
• The benefits of SEM as a tool for quantifying complex interrelationships are shown.
• MeHg signal is the most important determinant of fish Hg across all three systems.
• DOC effects on fish Hg are complex with competing antagonistic pathways.
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Structural equation modeling (SEM) provides a framework that can more properly handle complex variable in-
teractions inherent in mercury cycling and its bioaccumulation compared to more traditional regression-based
methods. SEM was applied to regional data sets for three different types of aquatic ecosystems within Florida,
USA – lakes, streams, and the Everglades – to evaluate the underlying nature (i.e., indirect and direct) of the re-
lationships between fish mercury concentrations and trophic state related variables such as nutrients, dissolved
organic carbon (DOC), sulfate, and alkalinity. The modeling results indicated some differences in key variable re-
lationships — for example, the effect of nutrients on fish mercury in lakes and streams was uniformly negative
through direct and indirect pathways consistent with biodilution or eutrophication-associated effects on food
web structure. Somewhat surprisingly, however, was that total phosphorus did not serve as a meaningful vari-
able in the Everglades model, apparently because its effects were masked or secondary to the effects of DOC.
What is perhaps a more important result were two key similarities across the three systems. First, the modeling
clearly indicates that the dominant influence on fish tissuemercury concentrations in all three systems is related
to variations in themethylmercury signal. Second, themodeling demonstrated that the effect of DOC on fishmer-
cury concentrations was exerted through multiple and antagonistic pathways, including facilitated transport of
totalmercury andmethylmercury, enhanced rates of methylation, and limitations imposed on bioavailability. In-
deed, while the individual DOC pathways in the models were all highly significant (generally p b 0.001), the net
effect of DOC in eachmodel was greatly reduced or insignificant. These results can help explain contradictory re-
sults obtained previously by other researchers in other systems, and illustrate the importance of SEM as amodel-
ing tool when studying systems with complex interactions such as the aquatic mercury cycle.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Mercury (Hg) contamination in aquatic ecosystems has been an
issue of considerable concern for over fifty years (McCurry, 2006) be-
cause highly toxic methylmercury (MeHg) readily bioaccumulates
through aquatic food webs (e.g., Watras and Bloom, 1992; Thera and
Rumbold, 2014; Seixas et al., 2014), often to concentrations that pose
risk to not only aquatic organisms, but also to terrestrial wildlife and

humans that consume higher trophic level organisms such as predatory
fish obtained from these ecosystems. Risk from consumption and expo-
sure to MeHg comes in several forms, including effects as a powerful
neurotoxin (Clarkson, 1997; Clarkson et al., 2003; Grandjean et al.,
2010) and reproductive impairment in fish and birds (Crump and
Trudeau, 2009; Scheuhammer et al., 2007; Evers et al., 2008; Frederick
and Jayasena, 2011).

Hg cycling in aquatic ecosystems and accumulation in aquatic
foodwebs is quite complex and, although atmospheric inputs are the
primary source for most aquatic ecosystems with elevated biota Hg
concentrations, variations in biota Hg concentrations across aquatic
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ecosystems within a geographic region characteristically reflect
variations in hydrological and biogeochemical characteristics to a great-
er extent than variations in atmospheric inputs. For example, the coef-
ficient of variation (CV) of modeled total Hg deposition fluxes (wet
plus dry) to lakes distributed across Florida is 25% compared to a CV
of 66% for total Hg concentrations measured in largemouth bass from
the same lakes (normalized to 15 inches length) (data from Pollman,
2012a). Thus, if the relationship between atmospheric inputs of Hg
and biota response for a given aquatic ecosystem is linear as indeed
several studies suggest (Krabbenhoft et al., 2004; Orihel et al., 2006,
2007), variations in atmospheric inputs can only account for a minor
fraction of the observed variations in biota concentrations. In contrast,
the CV for a suite of key biogeochemical variables (alkalinity, DOC, chlo-
rophyll a, sulfate, and total phosphorus) generally considered to be im-
portant in influencing aquatic Hg cycling all exceed (up to nearly 3×)
that of the CV for largemouth bass Hg concentrations in the same
lakes, and thus can easily account for most of the variance in biota
concentrations.

The geographic scale of emission sources contributing to thedelivery
of atmospheric Hg to most aquatic resources with elevated biota Hg
concentrations is regional to global (Seigneur et al., 2004; Gbor et al.,
2007). Moreover, the contribution of current anthropogenic sources to
global Hg deposition is only about one-quarter to one-third, with legacy
anthropogenic sources contributing approximately one-third to three-
fifths the current flux, and natural sources contributing the remaining
fraction (Pirrone et al., 2010; Amos et al., 2013). While the legacy pool
of Hg is likely recent in origin, and thus would expectedly have a fairly
rapid turnover time in response to reductions in global emissions
(Engstrom et al., 2013), the ability to mitigate the vast majority of im-
paired aquatic ecosystems over the immediate near term (years) by
controlling local emissions is marginal at best. For example, based on
CMAQ model estimates (UMAQL, 2012), emission sources within Flori-
da contribute on average only ~ 2% of the total atmospheric Hg directly
deposited to Florida's lakes and rivers/streams, and for ~96% of the lakes
and streams the local contribution was 10% or less (Pollman, 2012a).

These two key aspects of aquatic Hg cycling (the controlling effect of
biogeochemistry and the limited ability to mitigate Hg sources) suggest
that mitigation approaches that focus on biogeochemistry may bemore
effective than controlling local Hg emissions. In a recent synthesis of
studies on Hg bioaccumulation in the Great Lakes region, Evers et al.
(2011) concluded “concentrations of mercury in biota are related to,
and can bepredicted from, environmental conditions in aquatic systems
that are known to influence ecosystem sensitivity to mercury.” Under-
standing these conditions can potentially lead to management strate-
gies for mitigating the Hg problem. For example, a number of studies
have shown that biota Hg concentrations are inversely related to alka-
linity or acid neutralizing capacity (ANC) (Håkanson et al., 1988; Spry
and Wiener, 1991; Lange et al., 1993; Kamman et al., 2004; and
Dittmann and Driscoll, 2009), and Yu et al. (2011) suggest that atmo-
spheric emission controls of SO2 (thus reducing acidic deposition) will
likely result in decreasing biota Hg concentrations as well. Similarly,
biota Hg concentrations have been shown todecrease in response to de-
clining rates of sulfate deposition or loading, thus suggesting a manage-
ment strategy of reducing sulfur emissions from sources impacting
aquatic ecosystemswhere the availability of sulfate limits sulfate reduc-
tion and attendant Hg methylation rates (Hrabik and Watras, 2002;
Drevnick et al., 2007; and Coleman Wasik et al., 2012). In addition,
there has been considerable debate about whether reductions in total
phosphorus (TP) and coupled changes in aquatic community structure
resulting from the restoration of the Florida Everglades will exacerbate
an already profound biota Hg problem (Fink et al., 1999; Green and
Perko, 2001; Krabbenhoft et al., 2001). For example, restoration is
expected to induce shifts in highly eutrophied areas of the northern
Everglades characterized by simplified, less tightly coupled food webs,
tomore complex, tightly coupled foodwebsmore conducive to promot-
ing higher aquatic biota Hg concentrations (Stober et al., 2001).

One approach towards developing a better understanding of the bio-
geochemical variables that govern Hg cycling and bioaccumulation in
aquatic ecosystems has been through either correlation analysis or con-
structingmultivariate – in particular, multiple linear regression (MLR) –
models that relate, for example, variations in fish tissue Hg concentra-
tions to a set of independent biogeochemical variables. Such models
characteristically are constructed across a broad set of lakes or streams
and examples include studies conducted in Sweden (Håkanson et al.,
1988), the Upper Midwest and Minnesota (Grieb et al., 1990; Wiener
et al., 2006), the northeastern US, including the Adirondacks (Chen
et al., 2005; Kamman et al., 2005; Simonin et al., 2008; Dittmann and
Driscoll, 2009), and Florida (Lange et al., 1993; Pollman, 2012a).

An important assumption in the potential use of MLR models as
management or assessment tools is that the independent variables are
indeed truly independent. For example, a number of studies have
shown that fish tissue Hg concentrations are inversely related to ANC
and positively related to MeHg concentrations. At the same time, ANC
typically declines and MeHg concentrations may increase in response
to the acidifying effects of protons accompanying anthropogenic or ex-
cess sulfate concentrations. Thus the question arises – with changes in
fish tissue Hg resulting from changes in sulfate loadings and resultant
changes in ANC – howmuch of the fish tissue Hg response is due to di-
rect changes in ANC and howmuch of the response is due to the effects
of changing sulfate on methylation? Traditional MLR models only con-
trol for direct effects, and provide no information on indirect, and thus
the total effect on responsewhen the independent variable (e.g., sulfate)
also is mediated by the effect of other variables in the model.

One approach that allows andmore properly accounts for the effects
of mediating variables is structural equation modeling (SEM) which,
through the development of a hypothesized model, seeks to reproduce
the covariance structure of the observed data (Ullman, 2007). SEM can
include linking confirmatory factor analysis (which can be used to con-
struct latent variables representing unmeasured processes) with path
analysis and is often referred to as causal analysis (Ullman, 2007) be-
cause the approach often is used to test or confirm an a priori, hypothe-
sized model (Austin, 2007). While SEM does not actually prove
causality, it does provide a framework for selecting or rejecting hypoth-
eses based on the empirical data (Iriondo et al., 2003). Although the
roots of SEM extend back in time over 90 years with Wright's (1921,
1934) development of path analysis, application of SEM to aquatic
systems is relatively novel and rare. Examples include using SEM to
model macroinvertebrate distribution in riverine ecosystems (Bizzi
et al., 2013) and estuaries (Malaeb et al., 2000), submersedmacrophyte
biomass (Hung et al., 2007), lacustrine phytoplankton dynamics
(Arhonditsis et al., 2006; Liu et al., 2010; Korhonnen et al., 2011), and
MeHg cycling and bioaccumulation in the Florida Everglades (Stober
et al., 2001). In addition, SEM has been used to construct models with
a clear environmental management focus (La Peyre et al., 2001; Stober
et al., 2001; and Reckhow et al., 2005). For example, La Peyre et al.
(2001) used SEM tomodel nationalwetland protection efforts as a func-
tion of five latent variables (defined as economic capital, social capital,
government characteristics, environmental characteristics, and land-
use pressure). Their model suggested that variations in social capital
had the greatest influence onwetland protection efforts, and concluded
that continued focus on social development was necessary to further
wetland protection. Readers interested in learning more about SEM, in-
cluding the underlying mathematics, basic elements of constructing an
SEM, issues and limitations, and detailed examples of its implementation,
are directed to the papers by Malaeb et al. (2000) and Ullman (2007).

2. Materials and methods

2.1. Data sets

The objective of this paper is to use SEM to model fish Hg bioaccu-
mulation in response to key biogeochemical variables in three different
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