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H I G H L I G H T S

• Conditional inference tree can identify variables controlling metal distribution.
• Finite mixture distribution model can partition natural and anthropogenic sources.
• Geostatistics with stochastic models can delineate soil contaminated area.
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An extensive soil survey was conducted to study pollution sources and delineate contamination of heavy metals
in one of the metalliferous industrial bases, in the karst areas of southwest China. A total of 597 topsoil samples
were collected and the concentrations of five heavy metals, namely Cd, As (metalloid), Pb, Hg and Cr were ana-
lyzed. Stochastic models including a conditional inference tree (CIT) and a finite mixture distribution model
(FMDM) were applied to identify the sources and partition the contribution from natural and anthropogenic
sources for heavy metal in topsoils of the study area. Regression trees for Cd, As, Pb and Hg were proved to de-
pend mostly on indicators of anthropogenic activities such as industrial type and distance from urban area,
while the regression tree for Cr was found to be mainly influenced by the geogenic characteristics. The FMDM
analysis showed that the geometric means of modeled background values for Cd, As, Pb, Hg and Cr were close
to their background values previously reported in the study area, while the contamination of Cd and Hg were
widespread in the study area, imposing potentially detrimental effects on organisms through the food chain.
Finally, the probabilities of single and multiple heavy metals exceeding the threshold values derived from the
FMDMwere estimated using indicator kriging (IK) andmultivariate indicator kriging (MVIK). The high probabil-
ities exceeding the thresholds of heavy metals were associated with metalliferous production and atmospheric
deposition of heavymetals transported from the urban and industrial areas. Geostatistics coupledwith stochastic
models provide an effective way to delineate multiple heavymetal pollution to facilitate improved environmental
management.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Soil pollution with heavy metals has been an ever growing concern
due to the potential threat to food safety and its detrimental effects on
human and animal health. Heavy metals are introduced into soils and
environment through both natural and anthropogenic sources. The
natural inputs of heavy metals in soils are attributed to geological
parent materials. On the other hand, the anthropogenic sources of

heavy metals have become more complex in recent decades, including
metalliferous mining and smelting, chemical industry, fossil fuel
combustion, waste incineration, agricultural activities, and atmospheric
deposition (Alloway, 2013; Cheng, 2003).

It is essential to identify pollution sources and to map high risk areas
before pollution control actions are taken (Chen et al., 2009).Multivariate
statistics combined with geostatistics have been applied to identify the
sources and spatial distribution patterns of heavy metals in soils (Li
et al., 2013; Lu et al., 2012; Maas et al., 2010; Martin et al., 2006; Saby
et al., 2009). Relationships between variables, however, may be strongly
nonlinear and involve high-order interactions, whereas it could be hard
for the commonly used multivariate statistical techniques to find mean-
ingful patterns of metal concentrations in soils (De'ath and Fabricius,
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2000). To overcome this problem, stochastic models can be useful tools
for pollution source identification, based on the statistical analysis of sam-
pled data in combinationwith corresponding environmental parameters.
A stochastic method combining artificial neural networks and Monte
Carlo simulations (ANN–MCS), which can help deal with uncertainties
arising from limited data quality and measurement errors in samples,
has been used to predict the phytoavailability of copper in contaminated
soils based on the variability of soil input parameters (Hattab et al., 2013).
A classification and regression tree (CART) has been used in a few studies
to identify various sources attributed to soil pollutionbyheavymetals and
persistent organic pollutants (Kubosova et al., 2009; Vega et al., 2009;
Zhang et al., 2008). Furthermore, a conditional inference tree (CIT) has
been developed to consider different types of predictor variables mea-
sured at arbitrary scales and overcome the problems of over-fitting and
biased variable selection (Hothorn et al., 2006; Hu and Cheng, 2013).
Another stochastic approach, a finite mixture distribution model
(FMDM), which describes a pooled population as a single distribution or
amixture of two ormore distributions, has beenused to estimate the pro-
portion of natural and anthropogenic sources for heavy metals in soils
(Hu and Cheng, 2013; Yang and Chang, 2005). A combination of FMDM
with geostatistical models provide further insight into identification of
pollution sources and high risk areas of heavymetals in soils and partic-
ulate matter in atmospheric environment, which generally consists of
determining FMDM cutoff values of pollutant concentrations and
mapping probabilities of contaminated areas (Chu et al., 2012; Lin
et al., 2010).

The study area is located in the northwest of Guangxi Zhuang Auton-
omous Region (China), and is a metalliferous industrial district with
abundant mineral resources such as tin, lead, zinc and antimony. As one
of the well-developed karst areas, the shortage of arable land and the
low restoration rate of wastelands have made soils even more valuable
there (Li et al., 2007). Previous studies have focused on soil pollution
around mining sites, areas surrounding smelters (Li et al., 2009; Xiang
et al., 2011; Zhang et al., 2012), as well as agricultural soil pollution
along riversides due to the mining activities upstream (Liu et al., 2010;
Wang et al., 2009; Zhou et al., 2005). However, few studies have been
carried out on soil pollution sources and risk mapping in the study area.
In this study, an extensive survey was conducted for soil heavy metal
contamination in topsoils of this area. The CIT and FMDM models were
applied to identify the sources and to estimate the proportions of contri-
butions fromnatural and anthropogenic sources for heavymetal contam-
ination in the topsoils. Finally, indicator kriging andmultivariate indicator
krigingwere implemented tomap the spatial probabilities of contamina-
tion calculated based on the thresholds obtained from FMDMmodel. This
work will provide a scientific basis for environmental management of
heavy metal pollution in soils.

2. Material and methods

2.1. Study area, sampling and chemical analysis

The study area, including one district and ten counties, is located in
the northwestern part of Guangxi on the southern end of the Yunnan–
Guizhou Plateau, with a total area of 33,500 km2 and a population of
3.99 million. The area has a monsoon-influenced humid subtropical cli-
mate with an annual average rainfall around 1090–1920 mm which is
concentrated between May and August. The annual average tempera-
ture is 17 °C–20 °C. It has a widely distributed Karst landform which
makes up 67% of the study area (Yang et al., 2011). Generally, the
depth of Karst soil is around100 cm in flat areas and 20–40 cmon slopes
(W. et al., 2006; Yang et al., 2011). The dominant wind comes from the
east–north-east and the north-east, and to a lesser extent, from thewest
direction. The study area is reputed to be a town of non-ferrous metals
in China and a rare polyparagenetic ore district in theworld. As a conse-
quence of the long period of mining activities, high concentrations of
heavy metals have been gradually accumulated during the mining

exploration, mineral concentration and smelting processes, especially
lead, arsenic, mercury, cadmium and chromium, which are widely
known for their deleterious effects on the environment and human
health.

A total of 597 topsoil samples (0–20 cm depth) were systematically
collected from a grid of 5 × 5 km2 in the four north counties and a grid of
15 × 15 km2 in the other seven counties (Fig. 1). For each sampling sites,
three to five sub-samples were collected and mixed to form one com-
posite sample using a stainless steel auger. Geographic coordinates of
the sampling points were recorded using a global positioning system.
After the air-drying and manual removal of root and plant materials,
the soil samples were sieved to pass a 2-mm mesh. Portions of the soil
samples were ground and passed through a 0.1-mm sieve and stored
in plastic bags at 4 °C for chemical analysis. The soil samples were
then digested with a mixture of HNO3–HClO4–HF. The total concentra-
tions of Pb, Cd and Cr in the digested solutions were determined by
flame atomic absorption spectrometry (Tao, 1995). The concentrations
of As and Hg were detected using atomic fluorescence spectrometry
after digestion with a H2SO4–HNO3–HClO4 mixture for As and a
H2SO4–HNO3–KMnO4 mixture for Hg (Lin et al., 2010).

2.2. Data collection and preparation

The CIT was used to identify the contributing factors associated with
the spatial distribution of heavy metals in topsoils of the study area. A
subset of available factors affecting the distribution of heavy metals was
chosen for the CIT model. The variables used in the study were classified
into four categories (See details in Table 1): (1) soil type (Soil.type),
which is the only available map related to the original parent materials
(Alloway, 2013; Wang et al., 2012); (2) land use type (Landuse), which
was expected to affect the redistribution and accumulation of heavy
metals in soils (Nicholson et al., 2003); (3) climatic conditions, such as
annual average precipitation (Rain), which could remove airborne
metal particulates on land surfaces (Garnaud et al., 1999); (4) indicators
of anthropogenic activities, including road conditions (i.e. Road.dens and
Class.road), industry types within a buffer zone of industrial plants
(Type.industry) and a distance from urban areas (Dist.city), which were
reported as the most important sources of heavy metal in topsoils
(Biasioli et al., 2006; Li et al., 2001).

Eight main soil types were identified in the study area (Fig. 2a): ferric
acrisols (ACf), haplic acrisols (ACh), humic acrisols (ACu), haplic alisols
(ALh), cumulic anthrosols (ATc), rendzic leptosols (LPk), haplic luvisols
(LVh), and dystric regosol (RGd), according to the Harmonized World
Soil Database (FAO and ISRIC, 2010). The land use type was compiled
fromLandsat 5 TM images andfinally divided into four categories, includ-
ing paddy field (PF), dry land (DL), shrub land (SL) and forest land (FL) as
shown in Fig. 2b. Annual average precipitation was collected from the
hydrological yearbooks (Ministry ofWater Resources, 2012) and interpo-
lated using the inverse distance weighted method. Here, road conditions
were represented by the total lengths and classes of roads within a 5 km
buffer zone surrounding the soil samples. These roads are divided into
primary and secondary road classes (Fig. 2c). The types of industrial
plants within a 2500m buffer zone were selected to account for their in-
fluences on heavy metal accumulation, based on a research on heavy
metal concentrations of topsoils around the antimony–lead smelter of
the study area (Xiang et al., 2011). Three types of industries were deter-
mined in the field investigation, including metallurgical plants (MP), ar-
senic chemical plants (AP) and tailing ponds of metallurgical plants
(TP) (Fig. 2d).

2.3. Conditional inference tree (CIT)

The CIT was applied to estimate regression relationships between
predictor variables and heavy metal concentrations by recursive binary
partitioning in a conditional inference framework (Hothorn et al.,
2006). In this procedure, an assumption was made that the conditional
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