Author's Accepted Manuscript

Morphological study of co-extruded duallayer hollow fibre membranes incorporated with different TiO₂ loadings

Hazlini Dzinun, Mohd Hafiz Dzarfan Othman, A.F. Ismail, Mohd Hafiz Puteh, Mukhlis A. Rahman, Juhana Jaafar

www.elsevier.com/locate/memsci

PII: S0376-7388(15)00017-4

DOI: http://dx.doi.org/10.1016/j.memsci.2014.12.052

Reference: MEMSCI13402

To appear in: Journal of Membrane Science

Received date: 26 August 2014 Revised date: 14 December 2014 Accepted date: 30 December 2014

Cite this article as: Hazlini Dzinun, Mohd Hafiz Dzarfan Othman, A.F. Ismail, Mohd Hafiz Puteh, Mukhlis A. Rahman, Juhana Jaafar, Morphological study of co-extruded dual-layer hollow fibre membranes incorporated with different TiO₂ loadings, *Journal of Membrane Science*, http://dx.doi.org/10.1016/j.memsci.2014.12.052

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Morphological study of co-extruded dual-layer hollow fibre membranes incorporated with different TiO_2 loadings

Hazlini Dzinun^a, Mohd Hafiz Dzarfan Othman*^a, A. F. Ismail^a, Mohd Hafiz Puteh^b, Mukhlis A. Rahman^a, Juhana Jaafar^a

^aAdvanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi

Malaysia, 81310 Skudai, Johor, Malaysia.

^bDepartment of Environmental Engineering, Faculty of Civil Engineering, Universiti

Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.

Abstract

Dual-layer hollow fibre (DLHF) membranes prepared via phase inversion based coextrusion technique offer a number of advantages, such as self-supporting structure, high active surface area to volume ratio, easy fabrication and ability to withstand high operating pressure. This paper reports novel DLHF membranes fabricated via a single step co-extrusion technique with immobilized titanium dioxide (TiO2) nanoparticles embedded in their outer layer. In this work, the DLHF membranes were prepared by extruding two different dope solutions simultaneously, in which the inner layer consisted of poly(vinylidene fluoride) (PVDF) and solvent N,N-dimethylacetamide (DMAc) while the outer layer was a mixture of PVDF, TiO₂ and DMAc. The effect of TiO₂ loading, where the mass fraction of TiO₂/PVDF was varied from 0 to 1, on the morphologies and properties of the DLHF membranes were investigated using scanning electron microscopy (SEM), contact angle goniometer, surface roughness and filtration experiments. The SEM results showed that DLHF membranes have a good interfacial adhesion between layers with no delamination found. The structure of the membranes, characterized by the length of their finger-like voids was significantly affected by the TiO₂ addition. The void lengths were elongated by the rise of the TiO₂ loading up to certain fraction of TiO₂/PVDF. Based on all the findings, it can be concluded that the

Download English Version:

https://daneshyari.com/en/article/633118

Download Persian Version:

https://daneshyari.com/article/633118

Daneshyari.com