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• Cluster analysis grouped 94 cities by similar residential infiltration and commuting factors.
• Cities with older, smaller homes with less central AC grouped together.
• Cities with newer, larger homes more central AC grouped together.
• Cities with newer homes also tended to have longer commuting times and distances.
• Clusters can help group cities with similar exposures PM2.5.
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Epidemiological studies have observed between city heterogeneity in PM2.5-mortality risk estimates. These
differences could potentially be due to the use of central-site monitors as a surrogate for exposure which do
not account for an individual's activities or ambient pollutant infiltration to the indoor environment. Therefore,
relying solely on central-site monitoring data introduces exposure error in the epidemiological analysis. The
amount of exposure error produced by using the central-site monitoring data may differ by city. The objective
of this analysis was to cluster cities with similar exposure distributions based on residential infiltration and in-
vehicle commuting characteristics.
Factors related to residential infiltration and commuting were developed from the American Housing Survey
(AHS) from 2001 to 2005 for 94 Core-Based Statistical Areas (CBSAs). We conducted two separate cluster
analyses using a k-means clustering algorithm to cluster CBSAs based on these factors. The first only included
residential infiltration factors (i.e. percent of homes with central air conditioning (AC) mean year home was
built, and mean home size) while the second incorporated both infiltration and commuting (i.e. mean in-
vehicle commuting time and mean in-vehicle commuting distance) factors.
Clustering on residential infiltration factors resulted in 5 clusters,with twohavingdistinct exposure distributions.
Cluster 1 consisted of cities with older, smaller homes with less central AC while homes in Cluster 2 cities were
newer, larger, and more likely to have central AC. Including commuting factors resulted in 10 clusters. Clusters
with shorter in-vehicle commuting times had shorter in-vehicle commuting distances. Cities with newer
homes also tended to have longer commuting times and distances.
This is the first study to employ cluster analysis to group cities based on exposure factors. Identifying cities with
similar exposure distributions may help explain city-to-city heterogeneity in PM2.5 mortality risk estimates.

Published by Elsevier B.V.

1. Introduction

Multi-city population-based epidemiological studies have observed
heterogeneity between community- and city-specific PM2.5-mortality
effect estimates (Dominici et al., 2006; Franklin et al., 2007). Onepotential

reason for these differences is the use of central-site monitors as a
surrogate for exposure. This may introduce bias into the observed risk
estimates if the central-site monitor–exposure relationship varies by city.

Previous studies have hypothesized and reported higher air pollution
risks for cities with higher overall air exchange rates (AERs) or pollutant
infiltration efficiencies (Bell and Dominici, 2008; Hodas et al., 2012;
Janssen et al., 2002; Levy et al., 2005; Medina-Ramon et al., 2006). A
number of factors related to home characteristics can influence the
infiltration of ambient air into the home. Some of the most important
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factors include age of construction (Allen et al., 2003; Chan et al., 2005),
housing type (i.e., multi- vs. single-family home) (Koenig et al., 2005;
Pandian et al., 1993), and central air conditioning (AC) (Johnson and
Long, 2005). In addition people may spend time away from their
home (e.g. at work) or in other near-source environments (e.g. in
vehicles), where the composition and toxicity of pollutants can vary.
In-vehicle air pollution measurement studies have also indicated that
concentrations of pollutants inside cars and buses are considerably
higher than those recorded at nearby central-site monitors (Riediker
et al., 2003) and exposure models suggest that even a small amount of
time spent in vehicles may contribute significantly to the average
daily personal PM exposure (Burke et al., 2001). Recently exposure to
traffic pollution while in-vehicle has been shown to result in changes
in heart rate variability (Shields et al., 2013). Estimating exposures
based on community-average pollution concentrations also does not
account for time spent at other locations outside the assigned community,
and thus can add bias (Setton et al., 2011).

This analysis continues our attempt to better understand the
heterogeneity in PM2.5-mortality effect estimates across cities. Our
objective is to group cities with similar central-site monitor–exposure
relationships by clustering them using a k-means cluster analysis based
on residential infiltration and commuting characteristics. Exposure
variables related to infiltration and commuting patterns were developed
from the American Housing Survey (AHS) from 2001 to 2005 for 94
Core-Based Statistical Areas (CBSAs). It is anticipated that this approach
will identify groups of cities with similar exposure characteristics that
may explain the heterogeneity in PM2.5 mortality risk estimates observed
in multi-city epidemiologic studies.

2. Methods

2.1. Development of variables

We acquired data from the AHS, available from the Department of
Housing and Urban Development's website (Department of Housing
and Urban Development, 2001-2005) on community-specific residential
infiltration and commuting patterns. The AHS collects data on the
Nation's housing, including number of apartments, single-family homes,
mobile homes, and vacant housing units; and household characteristics
including household income, housing and neighborhood quality, housing
costs, heating equipment and fuels, size of housing unit, and recent
moves. AHS also collects information on type of transportation (e.g., car,
bus, subway) used to commute to work, commuting distance, and
commuting time. National data are collected in odd numbered
years, and supplemented with data for 47 selected CBSAs about every
six years. The national sample covers an average of 55,000 housing
units while each metropolitan area sample covers 4100 or more housing
units. For this analysis we used the national surveys and any available
metropolitan surveys from 2001 to 2005.

Using the housing units sampled in each CBSA as part of the AHS,
indicators of AERs were calculated as a means to identify those cities
thatmay have a higher fraction of ambient PM2.5 that penetrate indoors.
These indicators include percent of home with central air conditioning,
average home age, and average square footage of the home for each CBSA.
Previous studies have shown that personal and/or indoor concentrations
of sulfate (often used as a tracer for PM of ambient origin) are lower and
less well correlated with outdoor concentrations for homes with AC than
homes without AC (Suh et al., 1994, 1992). This is likely because air
conditioned homes typically have lower air exchange rates (AERs) than
homes that use openwindows for ventilation, suggesting that the fraction
of PM2.5 from ambient origin that penetrates indoors (i.e. infiltration) is
lower in homes with AC than in homes without AC. Other predictors of
AER include the year a structure was built, as well as its size (Chan
et al., 2005; Sherman and Matson, 2002). Newer homes are generally
more tightly sealed with lower AERs due to modern methods for
constructing and sealing building envelopes (Chan et al., 2005; Persily

et al., 2010). Similarly, larger houses typically have higher AERs
compared to smaller houses, since they contain a greater surface area
for leaks to develop (Chan et al., 2005).

The mean in-vehicle commuting distance and time were also
calculated for each AHS sample subject in each CBSA. Commuting was
considered in-vehicle if according to the AHS the mode of transportation
was car, truck, van, bus/streetcar, taxicab, or other vehicle. This in-vehicle
mode of transportation was then combined with the distance traveled in
miles and the time traveled in minutes.

Cluster analysis is based on the distance between points so variables
need to be scaled appropriately. If variables are measured on different
scales, or units variables within smaller units will lead to a larger range
for that variable tending to give that variable a greater effect or “weight”
(Han et al., 2012). To help avoid this the variables were standardized
prior to performing the cluster analysis. All variables were standardized
to a mean of 0 and standard deviation of 1.

2.2. Selection of cites

The total number of CBSAs covered in the national andmetropolitan
surveys from 2001 to 2005 was 148. The population of the CBSA largely
determines the daily number of clinical events, such as mortality and
hospitalizations, and thus the statistical power to detect potential adverse
health effects of air pollutants, as reflected in the confidence intervals
around their effect estimates. Small CBSAs with relatively few daily
events will havemore uncertainty surrounding their city-specific effect
estimates and less statistical power to detect potential adverse health
effects of air pollutants. From a previous report we determined that
populations of less than 500,000 would not provide enough daily
deaths to perform a time-series analysis with sufficient power to
detect significant associations between PM2.5 and mortality (Baxter
et al., 2012). As a result, for the analysis of the 148 CBSAs that are
included in AHS, we focused on the 94 CBSAs with a population
greater than 500,000 people. Population data for these 94 CBSAs
was obtained from the U.S. Census Bureau's website (United States
Census Bureau, 2010).

2.3. Cluster analysis

We used a k-means clustering algorithm to cluster CBSAs based on
residential infiltration factors and commuting patterns. This iterative
algorithm searches for a local solution that minimizes the Euclidean
distance between the observations and the cluster centers. The k-means
clustering algorithm is somewhat less sensitive to outliers than
hierarchical clustering methods (Punj and Stewart, 1983). In a k-means
cluster analysis the number of clusters (k) must be assigned a priori
based either on pre-existing knowledge of the data or observable
characteristics of the data set. For our analysis there was no pre-
existing knowledge of the number of unique clusters to specify.
We, therefore, calculated the within groups sum of squared errors
(SSE) for 14 cluster solutions with k ranging from 2 to 15 to identify
an optimal number of clusters.

SSE is defined as the sum of the squared distance between each
member of a cluster and its cluster centroid (Kaufman and Rousseeuw,
1990) as shown below.

SSE ¼
XK

i¼1

X

x�Ci

dist ci; xð Þ2

where K is the number of clusters; x is a city; Ci is the ith cluster; dist is the
standard Euclidean distance between two objects of Euclidean space; and
ci is the centroid of cluster Ci. In general, as the number of clusters
increases, the SSE should decrease because clusters are, by definition,
smaller. A plot of the SSE against a series of sequential cluster levels can
provide a useful graphical way to choose an appropriate cluster level.
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