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H I G H L I G H T S

• Thermal sensitivity is largely explained
by distance to coast, baseflow index,
and area.

• Maximum stream temperature (Tmax)
is controlled by baseflow index, per-
cent forest cover, and stream order.

• The relative importance of landscape
predictors for TS and Tmax changes by
the scale of analysis.

• Geographically weighted regression
better explains the spatial variation of
TS and Tmax than OLS estimated re-
gression.
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Stream temperature regimes are important determinants of the health of lotic ecosystems, and a proper un-
derstanding of the landscape factors affecting stream temperatures is needed for water managers to make in-
formed decisions. We analyzed spatial patterns of thermal sensitivity (response of stream temperature to
changes in air temperature) and maximum stream temperature for 74 stations in the Columbia River basin,
to identify landscape factors affecting these two indices of stream temperature regimes. Thermal sensitivity
(TS) is largely controlled by distance to the Pacific Coast, base flow index, and contributing area. Maximum
stream temperature (Tmax) is mainly controlled by base flow index, percent forest land cover, and stream
order. The analysis of four different spatial scales – relative contributing area (RCA) scale, RCA buffered
scale, 1 km upstream RCA scale, and 1 km upstream buffer scale – yield different significant factors, with to-
pographic factors such as slope becoming more important at the buffer scale analysis for TS. Geographically
weighted regression (GWR), which takes into account spatial non-stationary processes, better predicts the
spatial variations of TS and Tmax with higher R2 and lower residual values than ordinary least squares
(OLS) estimates. With different coefficient values over space, GWR models explain approximately up to 62%
of the variation in TS and Tmax. Percent forest land cover coefficients had both positive and negative values,
suggesting that the relative importance of forest changes over space. Such spatially varying GWR coefficients
are associated with land cover, hydroclimate, and topographic variables. OLS estimated regression residuals
are positively autocorrelated over space at the RCA scale, while the GWR residuals exhibit no spatial autocor-
relation at all scales. GWR models provide useful additional information on the spatial processes generating

Science of the Total Environment 461–462 (2013) 587–600

⁎ Corresponding author. Tel.: +1 503 725 3162.
E-mail address: changh@pdx.edu (H. Chang).

0048-9697/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.scitotenv.2013.05.033

Contents lists available at SciVerse ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2013.05.033&domain=pdf
http://dx.doi.org/10.1016/j.scitotenv.2013.05.033
Unlabelled image
mailto:changh@pdx.edu
http://dx.doi.org/10.1016/j.scitotenv.2013.05.033
Unlabelled image
http://www.sciencedirect.com/science/journal/00489697


the variations of TS and Tmax, potentially serving as a useful tool for managing stream temperature across
multiple scales.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Lotic ecosystemsdependon stable hydrologic temperature regimes in
order to remain viable. Dissolved oxygen levels, rates of chemical reactiv-
ity, and salmon and trout’s ability to survive and reproduce are all signif-
icantly influenced by stream temperatures (Naiman et al., 2005, Hannah
et al., 2008; Richter and Kolmes, 2005; Davie, 2008; Mantua et al., 2010).
Stream temperatures, in turn, are determined by the stream's local heat
budget. The local heat budget is influenced by the amount of receiving
solar radiation, amount of flow, and groundwater input. Streams around
theworld have seen significant changes to their natural heat budgets as a
result of landscape modification and global climate change. Therefore,
identifying temperature-sensitive streams has become an important
area of research in freshwater ecology and fisheries management
(Webb and Walling, 1993; Nelitz et al., 2007).

There are a number of anthropogenic landscape changes that cause
increased stream temperatures. Decreases in forest lands and land com-
paction resulting from logging, mining or agricultural practices acceler-
ate runoff and reduce subsurface flows which typically attenuate a
stream’s water temperature response to air temperature (Naiman
et al., 2005, Hannah et al., 2008). Surfaces less pervious than natural
lands (e.g., urban parking lots) reduce infiltration and warm surface
flows before they reach stream channels, providing additional heat to
the water bodies (Nelson and Palmer, 2007). Finally, the elimination
of riparian zones remove stream shading, which in turn increases expo-
sure to diurnal radiation (Poole and Berman, 2001; Johnson, 2004).

Global climate change will have varying hydrologic effects through-
out the world. The Pacific Northwest is a snowmelt dominated region,
so increases in global temperatures are projected to cause earlier
springtime runnoff, which in turn will reduce summer flows and de-
crease the thermal capacity of streams, which would otherwise act as
a buffer to increases in stream temperature (Mohseni et al., 1999;
Chang and Jung, 2010; Arismendi et al., 2013). A study of 157 river tem-
perature stations worldwide has shown that increases in daily air
temperatures of 2, 4, and 6 °C induce an increase in stream tempera-
tures of 1.3, 2.6, and 3.8 °C, respectively (Van Vliet et al., 2011). De-
creases in daily mean discharge of 20% and 40% from these rivers
could increase annual mean water temperatures by 0.3 °C and 0.8 °C
on average. In an urbanizedwatershed, the combined effects of air tem-
perature rise and discharge decrease could further exacerbate thermal
pollution (Chang and Lawler, 2011). While innovative water manage-
ment strategies such as releasing water from the bottom of reservoirs
where the water is cooler, can reduce monthly mean stream tempera-
tures (Risley et al., 2010), counteracting the combined warming effects
of anthropogenic activities remains a challenge (Hester and Doyle,
2011).

The importance of stream temperatures in stream health has
prompted academics and water managers to develop predictive
modeling techniques to aid in their work to mitigate climate change
and anthropogenic impacts (Caissie, 2006; Webb et al., 2008). These
models fall into three general categories: stochastic, process based,
and statistical. Stochastic models attempt to mimic the semi-random
nature of environmental data in order to properly model stream tem-
peratures (Risley et al., 2003). In contrast, process based models, also
called deterministic models, attempt to account for the entire heat
budget of a stream in order to derive highly accurate models. These
models require numerous inputs, such as air temperature, relative
humidity, solar radiation, and stream channel morphology. Given
the complexity of these physically based models, they can be of limit-
ed use due to the lack of measurements at a local scale for calibrating

the model. Statistical techniques use historic data to derive a regression
model of stream temperature from environmental characteristics such
as air temperature and landscape attributes. These environmental charac-
teristics are often times easier to collect and analyze, and so regression-
based models are a popular alternative to physically based models
(Isaak and Hubert, 2001; Isaak et al., 2010; Hrachowitz et al., 2010). For
these reasons, we use regression models for our analysis. However, it is
important to note that regression models have their limitations too.
They donot fully capture biophysical processes that affect stream temper-
ature, and while regression techniques are good at interpolation, extrap-
olating beyond the study area and time period may be problematic.

There are three main objectives of this paper. First, we identify hy-
drologic landscape factors affecting the spatial variations of maximum
stream temperature (Tmax) and the response of stream temperature
change to air temperature change (defined as thermal sensitivity =
TS, Crisp and Howson, 1982; Mohseni and Stefan, 1999; Kelleher
et al., 2012) in a large river basin. We chose these two indices because
maximum stream temperature is associated with critical limits for
the life cycle of salmonids (Ebersole et al., 2001; Hrachowitz et al.,
2010), and TS summarizes the cumulative buffering effects of local
landscape characteristics on stream temperatures and it can be used
for quantifying the sensitivity of stream ecology to future climate
change (Kelleher et al., 2012).

The second objective is to compare the relative contributing area
(RCA) scale and the buffer scale analysis at the whole RCA and 1 km
upstream scales. Previous studies show that stream temperature is af-
fected more by local land cover conditions (e.g., 1 km upstream) than
landscape conditions further upstream (Isaak et al., 2010), while
others report landscape variables within the whole mainstem ripari-
an buffer zone explain more variations in stream temperature than
those within the 1 km buffer zone (Scott et al., 2002). We also inves-
tigate whether landscape factors determining the variations of Tmax
and TS vary across scales.

The third objective of this article is to compare two regression
approaches — OLS estimates and geographically weighted regression
(GWR; Fotheringham and Charlton, 1998). We identify where spatial
variability in the influence of landscape factors on thermal sensitivity
and maximum stream temperature exists, and compare OLS regres-
sion estimates with GWR model estimates in order to investigate
whether there is significant improvement in model predictability.
Previous studies show that GWR improved model performance com-
pared to OLS in identifying the relationship between landscape
factors and hydrology (Brown et al., 2012) and water quality (Tu
and Xia, 2008; Pratt and Chang, 2012).

2. Study area

The Columbia River Basin (CRB) (Fig. 1) is one of the largest basins
in North America. It spans the states of Washington, Oregon, Idaho,
Montana, Wyoming, Nevada, Utah, and a portion of the Canadian
province of British Columbia. The basin is contained by the Rocky
Mountains to the East, includes the Cascade and Coastal Ranges in
the west, and drains into the Pacific Ocean at Astoria, OR. The Cascade
Range runs north to south, dividing the basin into two distinctly differ-
ent climates. East of the Cascades is dominated by warm summer con-
tinental climates, while the climate west of the Cascades is mostly
Mediterranean (NRC, 2004; Chang et al., 2013). Hydrologic regimes
vary throughout the basin, however. Due to a winter wet season
which results in significant snow accumulation, peak flows typically
occur in late spring or early summer as snow melts, and low flows
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