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HIGHLIGHTS

* We developed simple and complex methods to predict breathing from accelerometers.

« Simple multiple regression and complex random forest techniques performed comparably.
* Accelerometry can be used to predict breathing volume, duration and frequency.

» The methods may improve the understanding of how toxin exposure impacts disease.

ARTICLE INFO ABSTRACT

Purpose: To compare simple and complex modeling techniques to estimate categories of low, medium, and
high ventilation (VE) from ActiGraph™ activity counts.
Methods: Vertical axis ActiGraph™ GT1M activity counts, oxygen consumption and VE were measured during
treadmill walking and running, sports, household chores and labor-intensive employment activities. Categories
oflow (<19.3 I/min), medium (19.3 to 35.4 1/min) and high (>35.4 I/min) VEs were derived from activity inten-
sity classifications (light <2.9 METs, moderate 3.0 to 5.9 METs and vigorous >6.0 METs). We examined the ac-
curacy of two simple techniques (multiple regression and activity count cut-point analyses) and one complex
(random forest technique) modeling technique in predicting VE from activity counts.
Results: Prediction accuracy of the complex random forest technique was marginally better than the simple mul-
tiple regression method. Both techniques accurately predicted VE categories almost 80% of the time. The multiple
regression and random forest techniques were more accurate (85 to 88%) in predicting medium VE. Both tech-
niques predicted the high VE (70 to 73%) with greater accuracy than low VE (57 to 60%). Actigraph™ cut-points
for light, medium and high VEs were <1381, 1381 to 3660 and >3660 cpm.
Conclusions: There were minor differences in prediction accuracy between the multiple regression and the ran-
dom forest technique. This study provides methods to objectively estimate VE categories using activity monitors
that can easily be deployed in the field. Objective estimates of VE should provide a better understanding of the
dose-response relationship between internal exposure to pollutants and disease.
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1. Introduction information on breathing rate and volume (VE). Breathing rate is mea-

sured as the total number of breaths per minute and VE is the total

The etiology of several diseases is attributed to interactions among
the physical, chemical, and biological characteristics of the environment
with the human genome (Hunter, 2005). Inhalation is a common path-
way for various chemical and biological toxins to enter the human body.
Environmental researchers are interested in quantifying inhalation
exposure to understand the relationship between toxin exposure and
disease development (Boffetta et al., 1997; Dons et al., 2012; Mills
et al., 2007). Various devices are now available to measure the concen-
trations and type of toxins in the environment. In addition to toxin con-
centration, the accurate assessment of inhalation exposure requires
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volume of air inspired per minute (breathing rate x tidal volume).
Combining data on the type and concentration of inhaled toxins with
VE is necessary to comprehensively understand the dose-response re-
lationship between toxic exposure and disease development. Recent
evidence suggests that motion sensors such as accelerometers may be
useful to estimate VE (Kawahara et al., 2011; Rodes et al., 2012).
Accelerometers have been extensively used to estimate metabolic
equivalents (METs) or energy expenditure (kcals) (Crouter et al., 2006;
Freedson et al., 1998; Staudenmayer et al.,, 2009). Accelerometers vary
in the number of axes that detect acceleration, data storing capacity, on-
board data processing capabilities and battery life. Output from these
monitors increase linearly with activity intensity during most light and
moderate intensity activities (Freedson et al., 1998, 2011; Staudenmayer
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et al., 2009). A commonly used accelerometer is the uniaxial ActiGraph™
monitor (ActiGraph™, LLC, Pensacola, FL). Activity counts from ActiGraph
™ accelerometers have been used to develop both simple and complex
modeling methods to quantify physical activity (Freedson et al., 1998,
2011; John et al, 2011; Staudenmayer et al., 2009). These techniques
are typically developed and validated in the lab with measured VO, dur-
ing various ambulatory and simulated free-living activities as the criterion
measure. The models are then applied in the free-living environment to
estimate physical activity variables. A similar approach may be useful to
estimate breathing volume intensity categories using the ActiGraph™ ac-
celerometer. Recently, an accelerometer was used to estimate VE in chil-
dren (Kawahara et al,, 2011) and Rodes et al. (2012) used simple linear
regression to estimate VE from various accelerometers in adults.
Machine learning techniques using advanced statistical prediction
models are trained on input data to predict an outcome variable.
These techniques are novel because they detect underlying patterns in
the input data and are adaptable to improve prediction accuracy. The
potential of using machine learning techniques to estimate VE from ac-
celerometer data has not been examined. The objective of this study
was to use simple and complex modeling techniques to estimate cate-
gories of low, medium, and high VEs from ActiGraph™ activity counts
during a variety of ambulatory and simulated free-living activities.

2. Material and methods
2.1. Participants

Two hundred and seventy-seven healthy men and women (mean +
SD: age = 38.0 + 12.4 years, BMI = 24.6 + 4.0 kg/m?) were recruited
from the University of Massachusetts, Amherst and surrounding areas.
The study was approved by the University of Massachusetts, Amherst In-
stitutional Review Board and all participants provided written informed
consent. Participants were screened for chronic diseases including
cardiovascular and pulmonary disorders and exercise readiness using a
health history questionnaire and the Physical Activity Readiness Ques-
tionnaire (PAR-Q). Male and female participants above the age of 40
and 50 years, respectively, were screened for cardiovascular disease
risk with a physician-supervised 12-lead ECG stress test in accordance
with the American College of Sports Medicine Guidelines for Exercise
Testing (2009). Participants reporting any contraindications to exercise
on the health history and PAR-Q questionnaires, displaying symptoms
of cardiovascular disease during the stress test, or were on any medica-
tion that alter metabolic rate were excluded from the study.

2.2. Resting metabolic rate

Resting metabolic rate (RMR) was measured using the MedGem An-
alyzer (HealtheTech, Inc., Golden, CO). The MedGem is a valid device for
measuring RMR (Nieman et al., 2003). Following a 4-h restriction of
food, caffeine and exercise, participants rested quietly for 15 min in
the supine position. Measured RMR was used to calculate METs to indi-
cate the intensity for each activity from the lab-based activity protocols
(explained below).

2.3. ActiGraph™ accelerometer

The uniaxial ActiGraph™ GT1M (5.1 x 3.8 x 1.5 cm,42.6 g) monitor
was used in this study. The GT1M detects accelerations in the vertical
plane ranging between 0.05 and 2.0 G that lie within a frequency range
of 0.25 to 2.5 Hz. Accelerations are sampled at a rate of 30 Hz and then
converted to activity counts for a user specified time interval (epoch).
The monitors were initialized to collect data in 1-s epochs and the results
were downloaded using software (ActiLife v. 3.1.0.) provided by the
manufacturer. One-second activity counts were summed to obtain
1-min values (counts per minute or cpm) that were used in the data
analyses. Participants wore the GT1M monitor snugly at the waist in

line with the anterior axillary line using an elastic belt. ActiGraph™
monitors are commonly worn at the hip because of its proximity to the
center of mass of the body and hip movement is representative of
whole body movement.

2.4. Activity protocols

The activity protocol consisted of two routines of nine activities and
the activities were performed in random order. Each routine consisted
of treadmill activities and activities of daily living. Participants
performed six treadmill activities at three speeds (1.34, 1.56, and
223 ms™ 1), each at 0 and 3% grade. Three activities of daily living
were randomly selected from the following set of 15 activities: cleaning
the room, dusting, gardening, laundry, mopping, moving a box, mow-
ing, painting, raking, sweeping, trimming, vacuuming, washing dishes,
basketball and tennis. These activities represent common household,
leisure time and sporting activities and were performed at a
self-selected pace. Each activity was performed for 7 min with 4 min
of rest between activities. Participants were allowed to stop performing
an activity if they were unable to maintain activity intensity (e.g. high
treadmill speed).

2.5. Indirect calorimetry

Criterion VE and oxygen consumption (VO,) were measured on a
breath-by-breath basis using a portable metabolic measurement sys-
tem (Oxycon Mobile™; CareFusion, Yorba Linda, California) during
each activity. The Oxycon Mobile™ system consists of a facemask with
a small flow-meter and sampling line (for expired air) connected to
two small units mounted in a harness secured to the upper back. This
system was calibrated using its automatic flow calibrator and a known
gas mixture of oxygen (16%) and carbon dioxide (4%) before each use.

2.6. Data reduction and analyses

Activity data were not included in the analyses if a participant was
unable to complete the activity or if either the Oxycon Mobile™ or
ActiGraph™ activity monitor malfunctioned. Steady state VE, VO, and
activity counts for each activity were obtained after discarding data for
the first two minutes and averaging values for minutes 3 to 7. MET cut-
offs (derived from measured VO, and RMR) for light (less than 3
METs), moderate (3 to 6 METs), and vigorous (greater than 6 METSs) ac-
tivities were used to determine low, medium and high VEs. Due to the
near linear relationship between activity intensity and VE, simple linear
regression between steady state METs (independent variable) and VE
was used to determine VE values corresponding to 3 and 6 METs.
Medium and high VE cut-offs corresponded to 19.3 + 1.6 and 354 +
0.14 L/min, respectively. Similar MET-based methodologies have been
used by the United States Environment Protection Agency (EPA) to ac-
count for differences arising from individual variability (McCurdy, 2000).

Two simple techniques and one complex modeling technique were
evaluated to predict VE categories from activity counts. The simple
modeling techniques were multiple regression analysis and an activity
count ‘cut-point’ method. Activity count cut-points for medium and
high VE categories were determined using receiving operator charac-
teristic (ROC) curves. We calculated two variables over a wide range
of cpm cut-points: true positive percentage (y-axis) and false positive
percentage (x-axis). Fig. 2A and B depict the ROC curves used to deter-
mine cut-points for medium and high VEs. We considered cut-points
from 60 cpm to 12240 cpm. Each data-point in 2A and B represents dif-
ferent cut-points equally spaced by 60 cpm. In Fig. 2A, the true positive
percentage (sensitivity) on the y-axis is the fraction of minutes of medi-
um VE correctly detected by the cut-point. The false positive percentage
(1-specificity) is the fraction of minutes that are not at least medium VE
but were incorrectly determined to be at least medium VE by the
cut-point. Fig. 2B is similar, but detects high VE. On each graph, we



Download English Version:

https://daneshyari.com/en/article/6332966

Download Persian Version:

https://daneshyari.com/article/6332966

Daneshyari.com


https://daneshyari.com/en/article/6332966
https://daneshyari.com/article/6332966
https://daneshyari.com

