
Prediction of Maxwell–Stefan diffusion coefficients in
polymer–multicomponent fluid systems

Andrzej Kubaczka
Department of Process Engineering, Opole University, ul. Dmowskiego 7-9, 45-365 Opole, Poland

a r t i c l e i n f o

Article history:
Received 3 December 2013
Received in revised form
20 June 2014
Accepted 28 June 2014
Available online 8 July 2014

Keywords:
Diffusion
Multicomponent
Polymer
Free volume
Maxwell–Stefan

a b s t r a c t

Calculations of mass fluxes in multicomponent fluids based on the system of generalized Maxwell–
Stefan equations (GMSE) is preferably used because Maxwell–Stefan (M–S) diffusion coefficients are
symmetrical and have a clear physical meaning, as they reflect the binary friction forces between
compounds in the system. For the calculation of the mass transport of a multicomponent fluid in the
polymer basing on GMSE, it is necessary to have M–S diffusion coefficients. This paper proposes a
method that allows their calculation using widely available self-diffusion coefficients and binary
diffusion coefficients for infinitely diluted mixtures. The proposed method was compared with the
method of J.S. Vrentas and Ch.M. Vrentas [Restrictions on friction coefficients for binary and ternary
diffusion, Ind. Eng. Chem. Res. 46 (2007) 3422–3428] that allows to predict diffusion coefficients of
the generalized Fick's equation (GFE) for ternary systems based on self-diffusion coefficients. In the
computational experiment, values of molar fluxes of methanol and toluene in poly(vinyl acetate)
calculated in a wide range of concentrations using both methods were compared. Because the proposed
method calculates molar fluxes relative to the average molar velocity and the method cited above –mass
fluxes relative to the average mass velocity, for the sake of clarity of the comparison, the derivation of J.S.
Vrentas and Ch.M. Vrentas was repeated using molar concentrations and mole fractions instead of mass
density and mass fractions and molar fluxes were obtained as in the proposed method. In both methods,
derivatives of chemical potentials were calculated in the same way, using the UNIFAC-FV method for
which equations on derivatives of activity coefficients were derived. The computational experiment
showed that the values of fluxes calculated in ternary methanol–toluene–poly(vinyl acetate) system
using both significantly different methods are very close.

& 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Membrane separations technologies are likely to play an
increasingly important role in reducing the environmental impact
and operational costs of industrial processes [1]. Membrane
techniques are promising to replace energy inefficient classic
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separation processes that require a phase change in the mixture
that is to be separated. Furthermore, membrane separation units
are smaller than other types of plants. With the decrease in the
ratio between the equipment size and the production capacity,
membrane technologies address the requirements of process
intensification.

Separation through membranes is usually based on the trans-
port phenomenon of the molecules in the membrane material. The
importance of this phenomenon has led to the development of
numerous physical theories for the estimation of mass fluxes in
the membrane materials [2–17]. An estimation of these fluxes is
essential for processes developing (membrane materials, plants)
and requires the availability of mutual diffusion coefficients or
Maxwell–Stefan (M–S) diffusion coefficients. Different diffusion
coefficients are required for processes based on porous membrane,
and different – for a non-porous one [16, 17].

At present, diffusion coefficients in polymers are often deter-
mined by measurements that are usually complex and time-
consuming, and demand expensive instruments to provide the
required accuracy. In many cases, it is easier to carry out self-
diffusion experiments than to perform experiments which mea-
sure mutual or M–S diffusion coefficients exclusively for more
than binary systems [18–20].

Because self-diffusion coefficients describe the mobility of
molecules, a number of molecular theories develop expressions
for self-diffusion coefficients rather than for mutual or M–S ones.
Among others, such expressions were derived using the free-
volume theory of diffusion. [2–5, 7, 10].

Numerous works of Vrentas et al. [21, 24–28] and works [22,
23,29–32] have shown, however, that with certain assumptions, the
mutual diffusion coefficients may be related by dependences with
self-diffusion coefficient. Values of mutual diffusion coefficients can
then be calculated using the self-diffusion coefficients determined
either experimentally or using predictive methods.

The works [12, 29–32] share a common concept involving the
assumption that the ratio of the friction coefficients ψ ij defined by
Bearman [33] is constant and respectively equal to the molar volume
ratio or the molar mass ratio. Additional equations obtained this way
enable to solve the system of Bearman's equations and express mutual
diffusion coefficients with the function dependent on self-diffusion
coefficients and concentration of components in the system.

Vrentas and Vrentas [28] demonstrate that Bearman's equations
system can also be solved by assuming that there are geometric
dependences between friction coefficients. Although these depen-
dences result also from accepting the constant ratio of the coeffi-
cients, this assumption is only sufficient but not necessary conditions
for the geometric dependence to be true. Therefore, the assumption
of the geometric relationships between the coefficients is a prefer-
able solution because it demonstrates that their ratio does not need
to be constant, but may vary with concentrations in the system. The
solution of Bearman's equations [33] for the binary system involving
the geometric dependence shows that the identification of one self-
diffusion coefficient does not determine the value of the second one,
as in case of assuming a constant ratio. Both self-diffusion coeffi-
cients can be independently determined and their ratio determines
the value of the ratio between friction coefficients.

Based on these findings and on the demonstration that neither
the postulate of thermodynamics of irreversible processes regard-
ing the entropy inequality in the system, nor the Gibbs–Duhem
equation imposes any restrictions on friction coefficients, Vrentas
and Vrentas [28] suggest to assume for the ternary system that
geometric dependences – similar to that of the binary system –

appropriately apply between all friction coefficients in the system.
This assumption enables the work [28] to derive equations that
define the mutual diffusion coefficients (coefficients of the gen-
eralized Fick's equation (GFE)) as a function of self-diffusion

coefficients, system concentrations and chemical potential
derivatives.

In parallel with works intending to determine the components
mass fluxes in the polymer, based on the generalized Fick's
equation, for which mutual diffusion coefficients have been
determined either experimentally or as a function of the self-
diffusion coefficient and derivatives of chemical potentials, many
studies [13–17, 35, 36] have been published in which the solution
has been derived from the generalized Maxwell-Stefan equations
whose advantages in comparison with the generalized Fick's
equation are shown on examples, among others, in [17].

The selection of the Maxwell–Stefan equations has been domi-
nated by the argument that the diffusion coefficients in this equation,
the so-called Maxwell–Stefan (M–S) diffusion coefficients, represent
the binary interaction of friction forces between molecules; therefore
they are symmetrical and also less sensitive to the change of the
concentration in the system. The symmetry of the coefficients means
that to determine fluxes e.g. for the ternary system, the knowledge of
three coefficients (instead of four as in case of the generalized Fick's
equation) is sufficient; furthermore, the coefficients are free from
chemical potential derivatives.

Most of the existing GMSE used in systems with the polymer,
bypasses the original form of the GMS equations in which concentra-
tions are expressed as mole fractions [16, 34], whereas mass fluxes –
as molar fluxes relative to the average molar velocity. However, the
applied GMSE form involves mass or molar fluxes relative to the mass
or volume average velocity and concentrations expressed by mass or
volume fractions [13, 14], as well as the form with molar fluxes
relative to the fixed coordinate system and concentrations expressed
as above [15, 35, 36]. This selection of the reference of the system is
justified by the fact that the molar mass of the polymer is usually not
accurately defined and, thus, the molar concentration of polymer in
the system is not well-defined. Elimination of this disadvantage by
using mass or volume fractions in the system has turned out to be
apparent only, as it required the introduction of modified diffusion
coefficients that do not retain the Maxwell symmetry and also depend
on the molar mass of the polymer [13–15]. Therefore, the molar mass
of the polymer has remained in the system, only that it has been
moved from concentrations into diffusion coefficients. The loss of
symmetry of modified M–S diffusion coefficients hinders the process
of their experimental determination because e.g. for the ternary
system, one needs to determine six instead of three coefficients.

In [13, 15, 35], the GMS system has been a platform to calculate
mass fluxes and diffusion coefficients have been determined experi-
mentally or calculated from empirical relationships for which para-
meters have also been determined experimentally. In [36], the M–S
diffusion coefficients have been calculated using the method pro-
posed in [37]. The method, based on the free-volume theory, enables
to calculate M–S coefficients using universal constant and molecular
parameters of the polymer and compounds. The authors of [37] do
not recommend their method for mixtures whose compounds
greatly differ in shape or size.

Considering the benefits resulting from the GMSE system
compared with the GFE system and the current ability to predict
the value of self-diffusion coefficients, for systems of various
compounds with different (amorphous, cross-linked, crystalline)
polymers enabled by the method derived from the free-volume
theory [38–45], and examples [28, 29] of possible relations of
mutual diffusion coefficients with self-diffusion coefficients, this
work propose the method for predicting M–S diffusion coeffi-
cients. This method enables the calculation of M–S diffusion
coefficients if both self-diffusion coefficients and the values of
binary liquid diffusion coefficients at infinite dilution are known.

Because the application of the concentrations system different
from the original to GMSE, does not release them from the
polymer molar mass and subsequent modifications of the M-S
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