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a b s t r a c t

Liquid–liquid displacement porosimetry (LLDP) has been used to characterize several UF membranes in a
wide range of molecular weight cut-offs (MWCO). A new method to convert porosimetric data into pore
size distributions and related information has been developed based on assuming log-normal pore size
distributions. The results of this are in good agreement with those from the customary data conversion
algorithm (as derived by Grabar and Nikitine). The proposed method can also be used when a reduced
number of experimental data points is available, leading to a significant reduction of data acquisition
time needed to complete a reliable analysis.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

For most of the membrane separations, especially those based
on the application of a pressure gradient across the membrane
(namely microfiltration (MF), ultrafiltration (UF) and nanofiltration
(NF)) sieving is the main separation mechanism and therefore, the
relative size of the membrane pores/interstices and the molecules
to be retained, is the key factor to control separation.

A proper knowledge of the porous structure of a membrane
(usually consisting of a section which controls separation or active
layer, supported on a more open porous substructure or support)
is very important to assess its separation capabilities.

This kind of knowledge is the target of multiple characteriza-
tion methods that can be grouped under the term porometries.
These methods are based on very different physical principles but
all of them try to obtain information about the pore size distribu-
tion (PSD), from which important separation parameters such as
mean, maximum and minimum pore sizes, porosity or pore
density can be calculated. Methods based on the bubble point test
have been gaining recognition due to their unique capabilities. For
example, these methods test the membrane in wet state, very
close to the real operation conditions. In addition, the information

given refers only to active layer pores (even when the support is
not detached from the whole membrane).

There are two methods based on the bubble point: the gas–
liquid displacement porosimetry (GLDP) and the liquid–liquid
displacement porosimetry (LLDP), whose main difference relies
on the state of the fluids used for displacing the inner liquid. Both
techniques have been indistinctly named as capillary flow poro-
metry [1], liquid extrusion porometry [2], or even combined
bubble pressure and solvent permeance method [3,4], but all of
them refer to the same principle [5].

Both LLDP and GLDP are well-known and very similar in concept
and even in operation mode. Nevertheless GLDP has gained general
recognition while LLDP is still scarcely used, because it is more
difficult to operate and less reproducible. Some of the authors have
been working over in the last years to improve LLDP in an effort to
show the potential of the method, especially for tight UF and NF
membranes where other methods have strong difficulties to get
reliable results. One of the features of the LLDP that makes it less
attractive than GLDP is the shape of the distributions it provides.
Certainly the good aspect of the GLDP results is a consequence of a
continuous measurement procedure. Commercial GLDP apparatuses
usually divide the experimental range in 256 data points and
determine corresponding data pairs (flux, pressure), resulting in a
very smooth Gaussian distribution. The same procedure is not
accomplished in LLDP because liquid–liquid equilibrium usually
takes longer time (the whole experiment should take some hours)
and there is no guarantee of obtaining superior results to GLDP.
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Different algorithms are used to process data from GLDP and
LLDP experiments. Gas–liquid experiments need to account for
different gas flow regimes, namely Knudsen molecular flow along
with Hagen–Poiseuille convective transport [6]. Moreover, the
dependence of the gas permeance with applied pressure requires
a different experimental procedure (wet run followed by dry ones)
and different algorithms to convert experimental results into pore
size information. The algorithms which could be used for proces-
sing data from LLDP experiments have been reviewed by Morison
[7], who found that all of them are very sensitive to experimental
errors requiring some smoothing to get reasonable distributions.
Some authors have performed spline smoothing to get better
results from LLDP [8,9], based on a polynomial fitting that some-
how loses the physical meaning.

The approach in this work is to begin assuming a log-normal
PSD and then fit the experimental results to such model function.
A similar approach was used by Aimar et al. [10] to fit log-normal
distributions from retention data, sometimes combined with
moment theory to get more insight into theoretical distributions
[11,12]. Most of the membranes found in the market are well
described by a log-normal distribution of pore sizes [13], with a
continuous range from many very small pores to few much bigger
ones. This should lead to a right skewed distribution which is
better described by a log-normal function.

2. LLDP theory

2.1. Traditional methods to determine pore number distribution

The final aim of LLDP characterizations is to determine the PSD
of a porous sample, in this case a membrane. This technique is
based on the Young–Laplace equation which relates the surface
tension of a fluid inside a capillary with the radius of such
capillary. The experimental procedure consists in forcing a liquid
to enter the pores of a membrane previously filled with another
immiscible liquid (wetting liquid).

If a perfect wetting of the membrane by the wetting fluid is
assumed, the needed pressure to empty a given cylindrical pore is
related to the radius of such pore through the so called Cantor
equation (Eq. (1)) [14].

ΔP ¼ 2γ
r

ð1Þ

where ΔP is the applied pressure and γ the interfacial tension
(N/m) between both liquids and r the equivalent pore radius.

This technique accounts for the narrowest section of the pores,
because these pore-throats effectively govern the fluid transport
and the retention capabilities of the membrane, no matter how
complicated the membrane structure is.

The increase in the applied pressure is linked to an increase in
the flow due to the opening of new smaller pores. Therefore, by
measuring the equilibrium pressure drop corresponding to each
increment of flux, the basic experimental information from LLDP is
obtained.

A transport model inside the pores is then required to get the
PSD. The Hagen–Poiseuille equation through capillary cylindrical
pores is regularly used for convective transport of liquids inside
pores. This geometry assumption is not as restrictive as it may
look; since many membrane geometries can be simplified to a
group of more or less straight cylindrical pores having a radius
equal to the narrowest section of the actual pores found in the
membrane structure. Therefore, the flux Ji (m3/m2 s) associated to
the pores of radius ri (m) of the membrane, when a transmem-
brane pressureΔP (Pa) is applied, is given by the Hagen–Poiseuille

equation (Eq. (2)).

Ji ¼
Niπr4i
8ηl

ΔP ð2Þ

where Ni (pore/m2) is the pore number density of pores having a
radius ri, η (Pa s) is the viscosity of the displacing liquid and l (m) is
the length of the pores (usually the active layer thickness).
This term should include a tortuosity factor for not so regular
geometries.

However, the experimental flow values obtained are not
associated to a single pore size, but to those pores with radii
higher or equal to the radius obtained through the Cantor
equation (Eq. (1)) for the given applied pressure. Thus, Eq. (2)
cannot be directly applied to obtain the number of pores of a given
pore size and then, more complex mathematical procedures have
to be carried out in order to discriminate the contribution of each
pore size to the global flux. Different methods have been devel-
oped for that purpose, such as the original method of Erbe [15],
based on a graphical evaluation, and the method of Grabar and
Nikitine [14], which has been selected for this work, and it will be
briefly explained below

The volumetric flux for a givenΔP (J(ΔP)) is defined in terms of
the number of pores per unit area through Eq. (3).

JðΔPÞ ¼N
Z rmax

r
FVðr; ΔPÞf nðrÞdr ð3Þ

where N is the total number of pores per unit area (pore/m2), FV(r,
ΔP) is the volumetric flow (m3/s) through a single pore of radius r
at ΔP and fn(r) is the probability distribution function value for a
pore of radius r.

The pore number distribution (n(r)) is defined as the number of
pores per unit area and per unit radius, and can be calculated
using Eq. (4) which is based on the distribution function fn(r).

nðrÞ ¼Nf nðrÞ ð4Þ

Therefore, the number of pores per unit area with radii between rA
and rB (NAB) is given by Eq. (5). Note that if the limits of integration
are 0 and 1 the result of the integral is the total pore population,
N.

NAB ¼
Z rB

rA
nðrÞdr¼

Z rB

rA
Nf nðrÞdr ð5Þ

Taking into account the Hagen–Poiseuille equation and Eq. (4), it is
possible to rewrite Eq. (3) to obtain the volumetric flux, as long as
the variables are assumed to be independent of pressure.

JðΔPÞ ¼ πΔP
8ηl

Z 1

r
r4nðrÞdr ð6Þ

where the limits of integration are the lowest radius which is
opened at the applied transmembrane pressure ΔP (given by
Cantor equation) and the highest radius of the membrane which is
denoted as 1, because the probability distribution is 0 for r4rmax.

According to Grabar and Nikitine method [14], Eq. (6) has to be
differentiated, substitute radius by pressure using the Cantor equa-
tion, and then, calculate the number of pores per unit area and per
unit radius for a given differential of pressure through Eq. (7).

nðrÞ ¼ 8ηlΔP5

πð2γÞ5
dJ

dðΔPÞ�
J
ΔP

� �
ð7Þ

The algorithm derived by Grabar and Nikitine is, essentially, a
differential algorithm which requires the continuous curve of per-
meance variation for its derivation. However, experimental procedures
only give discrete values of flow and pressure, so Eq. (7) has to be
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