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a b s t r a c t

A modified procedure is proposed for mixture-model clustering of regional-scale geochemical data. The
key modification is the robust principal component transformation of the isometric log-ratio transforms
of the element concentrations. This principal component transformation and the associated dimension
reduction are applied before the data are clustered. The principal advantage of this modification is that
it significantly improves the stability of the clustering. The principal disadvantage is that it requires sub-
jective selection of the number of clusters and the number of principal components. To evaluate the effi-
cacy of this modified procedure, it is applied to soil geochemical data that comprise 959 samples from the
state of Colorado (USA) for which the concentrations of 44 elements are measured. The distributions of
element concentrations that are derived from the mixture model and from the field samples are similar,
indicating that the mixture model is a suitable representation of the transformed geochemical data. Each
cluster and the associated distributions of the element concentrations are related to specific geologic and
anthropogenic features. In this way, mixture model clustering facilitates interpretation of the regional
geochemical data.

Published by Elsevier Ltd.

1. Introduction

Regional-scale geochemical surveys typically involve the collec-
tion and chemical analysis of soil or stream-sediment samples at
multiple sites across thousands to millions of square kilometers.
The sample density varies enormously—from 1 site per 10 to
100 km2 (e.g., Webb et al., 1978; Fauth et al., 1985; Thalmann
et al., 1989; McGrath and Loveland, 1992) to 1 site per 1000 to
5000 km2 (e.g., Reimann et al., 2003; Salminen et al., 2005;
Caritat and Cooper, 2011; Smith et al., 2013). For each of the thou-
sands of samples, the concentrations of multiple elements are usu-
ally measured. An important part of the geochemical interpretation
is relating the spatial distribution of the element concentrations to
features such as bedrock and surficial geology. The traditional
method of establishing these relations involves comparing maps
of the element concentrations to geologic maps. The traditional
method is somewhat straightforward when the geochemical data
comprise only a few elements, but is difficult when the data com-
prise many elements (e.g., 30 elements).

When there are many elements, a multivariate statistical
method called ‘‘clustering’’ can help with the interpretation. The
essential idea of clustering is that the regional geochemical data
may be considered a mixture of data from different geochemical
processes, and the clustering partitions the data into groups that
are associated with the processes. The data from each geochemical
process often are localized to a specific region and may be associ-
ated with geologic or anthropogenic features. When such associa-
tions occur, they greatly facilitate the interpretation of the
geochemical data.

Clustering is a well-established method and is described in
many multivariate statistics books (e.g., Johnson and Wichern,
2007, 671–706; Hastie et al., 2009, 501–528). Nonetheless, the
application of clustering to geochemical data involves several sig-
nificant difficulties: The data are compositional, so they cannot
be directly analyzed with standard statistical methods
(Pawlowsky-Glahn, 2003); some measurements are below the
lower reporting limit (i.e., they are left-censored); those measure-
ments just above the lower reporting limit tend to have large
uncertainty; and modern data sets often include measured concen-
trations for about forty elements for each sample (i.e., the data sets
have high dimension).

Templ et al. (2008) compared the efficacy of many different
clustering procedures for processing regional geochemical data.
Among their many findings, they reported that a particular method
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called ‘‘model-based clustering’’ works well (Fraley and Raftery,
2002). Model-based clustering is based on a particular probability
model called a ‘‘finite mixture model’’ (McLachlan and Peel, 2000,
6), so we refer to this method as ‘‘mixture-model clustering’’ for
the rest of this article. Reimann et al. (2008, 233–247) and
Grunsky (2010) summarized how geochemical data can be ana-
lyzed with different clustering methods; Reimann et al. reported
favorable results using mixture-model clustering. Morrison et al.
(2011) present an application of mixture-model clustering to soil
geochemical data from California (USA).

We modified a mixture-model clustering procedure that was
originally presented by Templ et al. (2008), and we present the
modified procedure in this article. We explain why the finite mix-
ture model is appropriate for clustering of regional geochemical
data. To demonstrate the modified procedure, we apply it to soil
geochemical data collected in Colorado (USA). In addition, we com-
pare clustering results from the modified procedure and the
unmodified procedure.

2. Method

2.1. Mixture-model clustering

Consider a geochemical survey for which the survey area con-
sists of two regions with different geochemical properties. Assume
that the geochemical properties of each region may be character-
ized by a probability density function (pdf). The pdf for region 1
is f(z|h1) where h1 represents the parameters that characterize
the pdf. Variable z represents the element concentrations that have
undergone a transformation to make them suitable for standard
statistical analysis; the transformation is described in Section 2.2.
The pdf for region 2 is identical, except that its parameters are rep-
resented by h2. If a particular sample, which is indexed by i, is
within region 1, then f(zi|h1) usually will be large-valued, whereas
f(zi|h2) usually will be small-valued. In contrast, if sample i is
within region 2, the relation is reversed.

The pdf for the entire survey area p(z) is a weighted sum of the
two pdfs for the two regions: pðzÞ ¼ k1f ðzjh1Þ þ k2f ðzjh2Þ. Weight k1

equals the area of region 1 divided by the area of the entire survey
region. Weight k2 is similarly defined. Each weight is the relative
contribution of its associated pdf to p(z). When the sample loca-
tions for the geochemical survey are evenly distributed throughout
the survey area, such as for a soil geochemical survey, the fraction
of samples from region 1 is approximately k1, and the fraction of
samples from region 2 is approximately k2. Pdf p(z) is an example
of a finite mixture model.

To use the finite mixture model in practice, it is generalized to J
regions:

pðzÞ ¼
XJ

j¼1

kjf ðzjhjÞ ð1Þ

Pdf p(z) is interpreted as a mixture of J pdfs, each of which repre-
sents the geochemical properties of J regions within the survey area.
The weights are constrained: 0 6 kj 6 1 and

PJ
j¼1kj ¼ 1 (McLachlan

and Peel, 2000, 6). We believe that a finite mixture model is a suit-
able mathematical representation for the geochemical properties of
a survey area. Note that pdf p(z) depends upon variables kj and hj

(j = 1, . . ., J), but these variables are omitted from the notation to
simplify it.

The extent to which sample i is associated with pdf j is
expressed quantitatively with the conditional probability:

gij ¼
kjf ðzijhjÞ

pðziÞ
ð2Þ

for i = 1, . . ., n where n is the number of samples (Fraley and Raftery,
2002). The greater the value of gij, the closer the association of sam-
ple i with pdf j. Those samples for which gij P 0.5 for pdf j constitute
a ‘‘cluster.’’ The number of clusters equals the number of pdfs in the
finite mixture model. Thus, we call this procedure ‘‘mixture-model
clustering.’’

2.2. Clustering procedure

Clustering begins by preparing the geochemical data, which
involves eliminating those measurements with significant errors
because they could affect adversely the clustering. The details of
this step are most easily described with an example (see Section
3.2).

Clustering cannot be applied directly to element concentrations
because they are a type of compositional data. Such data have two
unique properties: they sum to a constant value (e.g.,
1,000,000 mg/kg), and they are greater than or equal to zero
(Aitchison, 1986, 25). The consequence of these two properties is
that the algebraic operations for compositional data differ from
those for non-compositional (conventional) data (Aitchison, 1986,
48–63). To overcome this problem, element concentrations are
mathematically transformed with the isometric log-ratio (ilr)
transform (Egozcue et al., 2003). The resulting ilr-transformed con-
centrations are a type of conventional data, which can be analyzed
with standard statistical methods (Pawlowsky-Glahn, 2003;
Mateu-Figueras et al., 2011).

The ilr-transformed concentrations are then transformed to
principal components. This transformation is important for at least
four reasons. First, the transformation reduces the dimension of
the data, which, in turn, reduces the chances that the mixture-
model clustering will encounter numerical problems (Fraley and
Raftery, 2002). Second, the transformation removes correlations
among the ilr-transformed concentrations, which could affect the
mixture-model clustering. Third, the transformation arranges the
data according to the amount of information it contains; this
important issue is described in detail later in this section. Fourth,
the transformation and the associated dimension reduction signif-
icantly improve the stability of the clustering. This important prop-
erty is demonstrated in Section 4.3.

An important step in the transformation to principal compo-
nents is calculating the mean vector and covariance matrix of the
ilr-transformed concentrations. As suggested by Filzmoser et al.
(2009), the calculation of these two quantities should be robust,
meaning that the calculation should be somewhat insensitive to
noise. To this end, the calculation is performed using minimum
covariance determinant estimator (Rousseeuw and van Driessen,
1999), which is implemented in software function ‘‘covMcd’’
within the R statistical programming language (R Core Team,
2013). A key parameter in the calculation is a, which specifies
the fraction of data that is excluded because its statistical distance
from the mean vector is too large (Johnson and Wichern, 2007, 31–
36). For example, if a is 0.35, then 35% of the data is excluded.
Because those data with significant error have already been elimi-
nated, we believe that parameter a should be less than 0.10; so, we
pick several values between 0.0 and 0.10.

The principal components are still ilr-transformed concentra-
tions — the origin has been translated so that the mean of the
ilr-transformed concentrations is zero, and the coordinate system
has been rotated so that the first coordinate accounts for most of
the variance (i.e., information) in the data, the second coordinate
for the next most variance, and so on. Thus, the principal compo-
nents order the data according to the amount of information that
the data contain. This ordering is apparent in a scree plot (Fig. 1),
which shows the variance of each principal component. (This par-
ticular scree plot pertains to the actual principal components cal-
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