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a b s t r a c t

The problem is to estimate the parameters of a source continuously releasing hazardous material into the
atmosphere. The concentration measurements are collected at a number of known locations by a moving
binary sensor, characterised by an unknown threshold. The paper formulated a solution in the Bayesian
framework, using a dispersion model of Poisson distributed particle encounters in a turbulent flow and
assuming the environmental parameters (wind velocity, diffusivity, particle lifetime) are known. The
method is implemented using an importance sampling technique and successfully validated with three
experimental datasets under different wind conditions. In this context, the estimates of the source
release rate are not of practical use, being scaled with an unknown constant related to the binary
threshold.

Crown Copyright © 2016 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Localisation of a source of hazardous substance release into the
atmosphere, is an important problem for national security and
environmental monitoring applications (Kendall et al., 2008).
Wind, as the dominant transport mechanism in the atmosphere,
can generate strong turbulent motion, causing the released mate-
rial to disperse as a plume whose spread increases with the
downwind distance (Arya, 1998). Assuming a constant release of
the contaminant, the problem involves estimation of source pa-
rameters: its location and intensity (release-rate). Two types of
measurements are generally at disposal for source localisation: (i)
the concentration measurements at spatially distributed sensor
placements; (ii) the average wind speed and wind direction (typi-
cally available from a nearby meteorological station).

Many references are available on the topic of polluting source
localisation, assuming un-quantised (analog) concentration mea-
surements. Standard solutions are based on optimisation tech-
niques, such as the nonlinear least squares (Matthes et al., 2005) or
simulated annealing (Thomson et al., 2007). These methods can be
unreliable due to local minima or poor convergence; in addition,

they provide only point estimates, without uncertainty intervals.
The preferred alternative is the use of Bayesian techniques; they
result in the posterior probability density function (PDF) of the
source parameter vector, thereby providing an uncertaintymeasure
to any point estimate derived from it. Most Bayesian methods for
source estimation are based on Markov chain Monte Carlo (MCMC)
technique, assuming either Gaussian or log-Gaussian likelihood
function of measurements (Keats et al., 2007; Humphries et al.,
2012; Ortner et al., 2007; Senocak et al., 2008). Recently, a
likelihood-free Bayesian method for source localisation was pro-
posed in (Ristic et al., 2015a).

Binary sensor networks have become widespread in environ-
mental monitoring applications because binary sensors generate as
little as one bit of information. Such binary sensors allow inex-
pensive sensing with minimal communication requirements
(Aslam et al., 2003). In the context of binary sensor networks, an
excellent overview of non-Bayesian chemical source localisation
techniques is presented in (Chen, 2008). Best achievable accuracy of
source localisation using binary sensors has been discussed in
(Ristic et al., 2015b).

Prior work in using binary sensor data for emitting source
localisation assumes that the detection threshold of the sensor is
known. It is a reasonable assumption for a commercial sensor
whose sensitivity is specified (for example, in parts per million by
volume (ppmv) or grams per cubic meter) by the manufacturer and
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when the sensor is well calibrated. However, we consider at least
two scenarios where the detection threshold of a binary sensor may
not be accurately known. The first scenario is when a sensor's
detection threshold goes off calibration due to environmental
conditions such as temperature or humidity or ageing of the sensor.
The second scenario is where the sensor is a human rather than a
device. For example, imagine a person smelling a strong odour such
as due to a gas leak or a decomposing animal carcass. When the
person moves around, the smell will be detected in some locations
but not in others, producing a binary measurement sequence
without knowing the exact value of the threshold in ppm or g/m3.
In this paper, we develop a Bayesian algorithm that carries out
source parameter estimation based on such binary concentration
measurements where the sensor threshold is unknown. A Monte
Carlo technique, importance sampling, is applied to calculate the
posterior PDF approximately. The method is successfully validated
using three experimental datasets obtained under different wind
conditions.

2. Models

2.1. Dispersion model

To solve the source localisation problem described above, we
propose a solution formulated in the Bayesian framework which
relies on two mathematical models: the atmospheric dispersion
model and the concentration measurement model. A dispersion
model mathematically describes the physical processes that govern
the atmospheric dispersion of the released agent within the plume.
The primary purpose of a dispersion model is to calculate the mean
concentration of emitted material at a given sensor location. A
plethora of dispersion models are in use today (Holmes and
Morawska, 2006) to account for specific weather conditions,
terrain, source height, etc. In this paper, we adopt a dispersion
model of “particle encounters” in a turbulent flow based on
Lagrange statistic (Vergassola et al., 2007). The model is compu-
tationally fast because an analytic expression for the mean rate of
particle encounters is available. During a certain sensing period, a
sensor experiences a Poisson distributed number of encounters
with released particles. The binary nature of measurements in-
dicates that a sensor reading of binary “1” or a “positive detection”
corresponds to the number of such encounters exceeding a
particular threshold.

If a binary sensor with a particular threshold makes positive
detections (binary “1”) at some locations and zero detections (bi-
nary “0”) at other locations due to a source of a certain release rate,
the measurements at these locations will be the same even if both
the source release rate and the sensor detection threshold were
scaled up or down together by the same amount; it is the ratio
between the source release rate and the sensor threshold that de-
termines which sensor locations will have positive or zero readings.
Therefore, when we estimate the source parameters using binary
data from a sensor whose detection threshold is unknown, we can
estimate only a scaled version of the source release-rate, where the
scaling coefficient remains unknown. Nevertheless, the source
location, which is actually the parameter of main interest, can be
estimated. Without loss of generality, in our experiments, we
assumed the sensor to output binary “1” if it encounters at least one
particle during a sensing period and output a binary “0” otherwise.

Let us adopt a two-dimensional coordinate system in which the
source is located at (x0, y0). The (scaled) source release rate is Q0; its
unit is the number of particles per second. The particles released
from the source propagate with combined molecular and turbulent
isotropic diffusivity D, but can also be advected by wind. We as-
sume the released particles to have an average lifetime of t (before

they are absorbed). While thewind speed is typically available from
meteorological data from a nearby measuring station, we use this
speed as the prior guess for a Bayesian estimate of the true, effec-
tive wind speed affecting the advection of particles. Accordingly, let
us assume that the mean wind speed is V and the mean wind di-
rection coincides with the direction of the x axis. We denote the
PDF of the wind speed by p (V). A spherical sensor of small size a at
a location with coordinates (x, y), non-coincidental with the source
location (x0, y0), will experience a series of encounters with the
released particles.

The parameter vector wewish to estimate consists of the source
coordinates (x0, y0), the source release rate Q0, and the wind speed
V. Let us denote it by q ¼ [x0 y0 Q0 V]u. The rate of particle en-
counters by the sensor at the ith location (where i ¼ 1,…,M) with
coordinates (xi,yi) can be modelled as (Vergassola et al., 2007):

Rðxi; yijqÞ ¼
Q0

ln
�
l
a

� exp
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�
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where D, t and a are known environmental and sensor parameters,
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is the distance from the source to ith sensor location, K0 is the
modified Bessel function of order zero, and
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dt

1þ V2t
4D

s
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Environmental parametersD, t and V can be captured by a single
non-dimensional parameter Z ¼ V2t/D.

2.2. Measurement model

The stochastic process of sensor encounters with released par-
ticles is modelled by a Poisson distribution. The probability that
sensor at location (xi,yi) encounters z2Zþ∪f0g particles (z is a non-
negative integer) during a time interval t0 is then:

Pðz;miÞ ¼
ðmiÞz
z!

e�mi (4)

where mi ¼ t0$R(xi,yijq) is the mean number of particles at (xi,yi)
during t0. Equation (4) represents the full specification of the
likelihood function of parameter vector q, given the sensor en-
counters z counts at the ith position.

However, because the actual sensor is binary, the measurement
model is

bi ¼
�
1; if z ¼ 1;2;3;…
0; if z ¼ 0:

(5)

Note that bi is a Bernoulli random variable with the parameter

qiðqÞ ¼ Prfbi ¼ 1g (6)

¼
X
z¼1

∞
Pðz;miÞ (7)

¼ 1� Pð0;miÞ (8)

¼ 1� e�mi : (9)

The likelihood function for the sensor when it is at the ith
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