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h i g h l i g h t s

� Meteorological inflow uncertainty is quantified for an urban-scale model.
� Uncertainty methods are applied to the Joint Urban tracer release experiment.
� Inflow uncertainty can explain simulated and observed tracer differences.
� Inflow uncertainty effects the ability to invert for an unknown source location.
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a b s t r a c t

A computational Bayesian inverse technique is used to quantify the effects of meteorological inflow
uncertainty on tracer transport and source estimation in a complex urban environment. We estimate a
probability distribution of meteorological inflow by comparing wind observations to Monte Carlo sim-
ulations from the Aeolus model. Aeolus is a computational fluid dynamics model that simulates atmo-
spheric and tracer flow around buildings and structures at meter-scale resolution. Uncertainty in the
inflow is propagated through forward and backward Lagrangian dispersion calculations to determine the
impact on tracer transport and the ability to estimate the release location of an unknown source. Our
uncertainty methods are compared against measurements from an intensive observation period during
the Joint Urban 2003 tracer release experiment conducted in Oklahoma City. The best estimate of the
inflow at 50 m above ground for the selected period has a wind speed and direction of 4:6þ2:0

�2:5 m s�1 and
158:0þ16

�23, where the uncertainty is a 95% confidence range. The wind speed values prescribed in previous
studies differ from our best estimate by two or more standard deviations. Inflow probabilities are also
used to weight backward dispersion plumes and produce a spatial map of likely tracer release locations.
For the Oklahoma City case, this map pinpoints the location of the known release to within 20 m. By
evaluating the dispersion patterns associated with other likely release locations, we further show that
inflow uncertainty can explain the differences between simulated and measured tracer concentrations.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Urban areas currently support more than half of the world's
population and are projected to house two out of every three
people by the year 2050 (United Nations, 2014). Accidental or
intentional releases of hazardous materials into urban atmospheres
can therefore affect the health and well-being of a large number of
people and cause serious economic damage. The release of methyl
isocyanate in the densely populated city of Bhopal, India in 1984,

for example, killed 4 thousand to 20 thousand people, injured half a
million, and is regarded as one of the world's worst industrial ac-
cidents (Havens et al., 2012). More recently, a train derailment ac-
cident in Graniteville, South Carolina in 2005 released 40 tons of
chlorine into the environment, which led to 9 fatalities, hundreds of
injuries, widespread evacuations, and 30 to 40 million U.S. dollars
in economic damage (Buckley et al., 2012).

Atmospheric dispersion models are important tools for assess-
ing and predicting the spread of hazardous materials and con-
taminants in urban regions, but applying these models in these
regions presents a number of challenges. Urban areas have complex
features, such as buildings and structures, street canyons, traffic-
induced turbulence, and urban heat island effects that affect the
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atmospheric flow and are difficult to represent explicitly in
dispersion models (e.g., Britter and Hanna, 2003; Di Sabatino et al.,
2003; Kusaka and Kimura, 2004; Hajra et al., 2011). Although
computational fluid dynamics (CFD) models can directly simulate
the flow and turbulence in the vicinity of buildings, they are
computationally prohibitive for most urban applications because
meter-scale resolution is needed to capture certain building effects
over kilometer-sized urban domains (e.g., Pullen et al., 2005).

Two approximation methods are commonly used to simulate
atmospheric flow in urban regions. Large eddy simulations (LES),
which are relatively expensive to run, compute turbulent motions
directly at larger scales and use parameterizations to estimate the
effects of small, subgrid-scale eddies. Models based on the
Reynolds-averaged Navier Stokes (RANS) equations, in contrast, are
computationally efficient because they compute the flow using
suitable averages for both the mean and turbulent motions. For a
particular urban dispersion application, the flow generated using
LES and RANS will differ, and these differences represent a form of
model uncertainty. Likewise, different models make different as-
sumptions about how to represent or parameterize other processes,
for example traffic flow, which leads to additional model
uncertainty.

In addition to the atmospheric flow, dispersion models require
other inputs to realistically simulate the spread of hazardous ma-
terials in urban environments. For a specific event, knowledge
about the location, timing, magnitude, and chemical properties of
the source material are needed. Information about the large scale
meteorological inflow conditions at the boundary of an urban area
(e.g., the prevailing wind speed and wind direction) also has to be
specified to drive the flow within the area. In emergency response
situations, predictive simulations can provide advance warning of
the transport and extent of plumes and help minimize damage, yet
there is often incomplete or limited knowledge about the meteo-
rological inflow and source characteristics. This incompleteness
leads to uncertainty that can affect the emergency response (e.g.,
see Konda et al., 2010). Under these circumstances, there is not
usually enough time to collect additional data to constrain all of the
inputs, so the existing information needs to be combined with the
models and expert judgment to arrive at reasonable estimates of
the values of the inputs.

Inverse modeling provides a mathematical framework for
determining optimal values of the inputs to an atmospheric
dispersion model. Given measurements that can be compared to
model outputs, inverse methods solve for the model inputs by
minimizing the differences between the simulation outputs and
measurements (e.g., see Tarantola, 2004). In addition to the optimal
values, some inverse methods (e.g., those based on Bayes’ rule) can
also provide information about the uncertainty in the model inputs
and outputs. For dispersion events, measurements of meteorolog-
ical variables and atmospheric concentrations in nearby and
affected regions are valuable sources of data for constraining the
model inputs. This data may constrain the inflow conditions, source
characteristics, and potentially other model inputs and parameters.

A variety of inverse methods have been developed for tracer
transport and dispersion problems (e.g., Prinn, 2000; Enting, 2000;
Giering, 2000; Todling, 2000; Tipping, 2002; Zheng and Chen,
2011). The methods are often used to estimate the magnitude
and location of sources (e.g., Chow et al., 2008; Zheng and Chen,
2010), but they can also be used to constrain other inputs. In this
study, we use an inverse method to quantify uncertainty in the
meteorological inflow at the boundary of an urban region. This
uncertainty is propagated through a dispersion model to determine
the impact on tracer transport and the ability to estimate the
location of a source. The inversion of the inflow is performed and
compared against measurements from the Joint Urban 2003 tracer

release experiment in Oklahoma City (Allwine and Leach, 2007).
Simulations of the urban flow and tracer dispersion are conducted
with the Aeolus model (Gowardhan, 2014) using realistic building
geometry for Oklahoma City. Aeolus is a building-aware, compu-
tationally-efficient CFD and Lagrangian particle dispersion system
that simulates atmospheric flow and turbulence in complex, urban
areas using LES or RANS.

The effects of meteorological inflow uncertainty on dispersion
in urban areas using building-aware models was recently
addressed by Rodriguez et al. (2013). The authors quantified the
sensitivity of dispersion to inflow direction by developing a plume
overlap metric and applying the metric to a variety of urban and
building configurations. They found that the sensitivity of the
plume depends upon the complexity of the urban features around
the source location, with high sensitivity occurring, for example,
when the source is surrounded by large buildings and obstacles.
Although the main scientific objectives of our report are similar to
those in Rodriguez et al. (2013), we use a data-driven Bayesian
approach to estimate the uncertainty. As demonstrated below, our
approach is arguably better suited for propagating the inflow un-
certainty to environmental impacts of hazardous releases.

Our work also follows from related studies that developed and
applied Bayesian inversion methods to reconstruct source charac-
teristics and evaluate sensor network designs for source inversions
(Chow et al., 2008; Johannesson et al., 2006; Lundquist et al., 2005;
Lucas et al., 2015). One important distinction from these studies is
our use of backward trajectories (e.g., Stohl, 1998), instead of
Bayesian inversion, to infer the source location. Because back tra-
jectories can be computed very quickly, the techniques presented in
this manuscript may be used to account for uncertainty in time-
critical, emergency response situations. As described in the
following sections, the CFD simulations are the most expensive
component of our overall analysis and can be pre-computed and
stored in a database for a specified urban region (e.g., Oklahoma
City). The inversion and uncertainty analysis can be conducted by
querying the database, which is a relatively efficient operation. The
strategy of using pre-computed CFD simulations for rapid assess-
ments of dispersion in urban areas has been shown to be effective
(Boris et al., 2010).

2. Methods

2.1. Overview

The inverse problem for inflow is motivated from a computa-
tional black-box perspective by describing the general models and
model inputs and outputs used to simulate the transport and
dispersion of trace gases in urban atmospheres. Although the dis-
cussion is centered around non-reactive trace gases, it can be
extended to reactive gases by using models that incorporate pro-
cesses and parameters for other sources and sinks, such as chemical
production and loss, and wet and dry deposition.

The concentration of a trace gas in an urban atmosphere can be
expressed, most generally, by

y ¼ Fðw; xÞ; (1)

where F represents a complex computational model that simulates
transport and dispersion. As written, this model takes two types of
inputs, represented by w and x, and provides an output, y, which
corresponds to a vector of trace gas concentrations at different
points in space and/or time. The input w is related to the source
term, and captures the magnitude, location, and duration of trace
gas emissions. The symbol x represents the atmospheric fluid
motion in the urban domain, which occurs through advection,
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