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h i g h l i g h t s g r a p h i c a l a b s t r a c t

� We observed spatial gradients of
polycyclic aromatic hydrocarbons
(PB-PAH) and BC.

� BC and PB-PAH variability is driven
by plumes from high emitting
vehicles.

� Two-layer models (plume þ back-
ground) were developed to describe
spatial patterns.

� The model plume layer is transfer-
able to an independent holdout
dataset.
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a b s t r a c t

Mobile monitoring of traffic-related air pollutants was conducted in Pittsburgh, PA. The data show
substantial spatial variability of particle-bound polycyclic aromatic hydrocarbons (PB-PAH) and black
carbon (BC). This variability is driven in large part by pollutant plumes from high emitting vehicles
(HEVs). These plumes contribute a disproportionately large fraction of the near-road exposures of PB-
PAH and BC. We developed novel statistical models to describe the spatial patterns of PB-PAH and BC
exposures. The models consist of two layers: a plume layer to describe the contributions of high emitting
vehicles using a near-roadway kernel, and an urban-background layer that predicts the spatial pattern of
other sources using land use regression. This approach leverages unique information content of highly
time resolved mobile monitoring data and provides insight into source contributions. The two-layer
model describes 76% of observed PB-PAH variation and 61% of BC variation. On average, HEVs
contribute at least 32% of outdoor PB-PAH and 14% of BC. The transferability of the models was examined
using measurements from 36 hold-out validation sites. The plume layer performed well at validation
sites, but the background layer showed little transferability due to the large difference in land use be-
tween the city and outer suburbs.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Exposure to traffic related air pollutants is linked with adverse
health effects including childhood cancer, respiratory, and

cardiovascular diseases (Brugge et al., 2007; Heck et al., 2013). The
spatial variability of traffic related pollutants, such as black carbon
(BC) and particle bound polycyclic aromatic hydrocarbons (PB-
PAH), is substantial in urban areas (Clougherty et al., 2013; Tan
et al., 2014a). However, the large spatial variation of traffic related
pollutants cannot be characterized by sparse monitoring systems
such as the U.S. EPA Air Quality System (AQS) that are designed to* Corresponding author.
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monitor regional compliancewith the National Ambient Air Quality
Standards. In many cases markers of traffic related emissions such
as BC or PB-PAH are not widely monitored.

Pollutant mapping studies aim to measure pollutants at high
spatial density using either saturation sampling or mobile moni-
toring. Saturation sampling studies collect integrated samples over
multiple weeks in different seasons, but there are still large un-
certainties in reproducing annual mean concentrations (Tan et al.,
2014b). Nevertheless, distributed sampling data is frequently
used to build land use regression (LUR) models that predict
pollutant spatial patterns (Zhang et al., 2014, 2015; Wang et al.,
2013; Kheirbek et al., 2012; Jedynska et al., 2014; Clougherty
et al., 2008). Mobile monitoring is even more uncertain in repro-
ducing annual mean concentrations because it collects data for
shorter durations than distributed sampling. However, the ability of
mobile monitoring to capture pollutant spatial patterns is compa-
rable with saturation sampling (Tan et al., 2014b), and mobile
monitoring data have been used to build LUR models (Larson et al.,
2009; Patton et al., 2015; Saraswat et al., 2013). While most mobile
sampling platforms are equipped with high time resolution
(~1 se1 min) instrumentation, many LUR models built frommobile
sampling use highly averaged data that loses much of the infor-
mational value inherent in high time resolution measurements.

Highly time resolved data collected in mobile monitoring
studies can provide important information on pollutant sources.
For example, a mobile monitoring study in the Los Angeles area
quantified particle emissions from the Los Angeles International
Airport (Hudda et al., 2014). High time resolution data can be used
to estimate emission factors for on-road traffic (Hudda et al., 2013),
including analysis of individual vehicle plumes (Dallmann et al.,
2011, 2012; Canagaratna et al., 2004). Mobile sampling can also
identify pollutant hotspots not captured by stationary monitoring
(Brantley et al., 2014). In our recent mobile monitoring campaign in
the Pittsburgh region, Tan et al. analyzed pollutant plumes from
high emitting vehicles (HEVs), most of which were diesel trucks
and buses, to partially resolve the sources of particle bound poly-
cyclic aromatic hydrocarbons (PB-PAH) and black carbon (BC) (Tan
et al., 2014a). HEVs contributed up to 70% of the on-road PB-PAH
and 30% of BC, with significant spatial variability that showed
strong linear correlation between the contribution of HEVs and the
Average Daily Truck Traffic (ADTT) counts (Tan et al., 2014a).

LUR are statistical relationships between land-use variables and
pollutant concentrations. Land-use variables typically include
traffic, zoning (e.g., industrial or residential), and elevation (Hoek
et al., 2008). Some variables in typical LUR models may be indica-
tive of pollutant sources. For example, traffic variables are related
with vehicle emissions, and variables associated with industrial
land use may indicate that a particular pollutant is emitted from
point sources. However, LUR is not a rigorous method to apportion
pollutant sources, and the regression coefficients in LUR models do
not necessarily represent the contributions of specific sources
(Hoek et al., 2008). LUR models may also include variables that lack
obvious physical interpretability or are not directly related to
sources. These limitations of LUR models limit their ability to
directly attribute observed pollutant concentrations to specific
sources and to predict potential changes in air quality due to
mitigation strategies. Additionally, LUR and other statistical models
often suffer from poor transferability. Models built for a specific
city, or even a portion of a city, typically are not applicable outside
of that region (Patton et al., 2015; Poplawski et al., 2009). Poor
transferability is most likely a consequence of the purely statisti-
cally based, rather than physically based, representation of
pollutant spatial patterns in LUR models.

An alternative method to predict spatial distribution of
pollutant concentrations is the distance-weighted kernel algorithm

(Loibl and Orthofer, 2001; Vienneau et al., 2009; Pratt et al., 2014;
Gulliver and Briggs, 2011). This method explicitly links emissions
to pollutant concentrations based on the proximity to sources and
expected dispersion patterns. Compared to other geospatial ap-
proaches, the kernel method better represents the transport of
pollutants away from sources by assuming a smooth fall-off near
sources rather than the sharp cutoff created by using fixed-distance
buffers, as recently demonstrated by Pratt et al (Pratt et al., 2014).
The distance-weighted kernel therefore offers the possibility of
improvingmodel transferability. The impact of potential changes in
emission sources (e.g., reduction in high emitting diesel trucks) can
also be readily estimated.

In this manuscript, we develop two types of spatial models
based on mobile sampling data collected in Pittsburgh, PA. The first
model is a traditional LUR. The second is a novel two-layer model
that leverages the unique attributes of highly time resolved data to
predict the spatial patterns of PB-PAH and BC with insight into
source contributions. The plume layer of the two-layer model uses
a previously published relationship between HEV plumes and ADTT
reported by Tan et al. (Tan et al., 2014a) and a distance-weighted
kernel algorithm to predict near-road contributions of HEVs. The
background layer predicts the spatial variability of the non-plume
background using LUR. We assess model transferability using a
separate holdout dataset, and compare the performance of the two-
layer model to the traditional LUR model.

2. Methods

2.1. Air pollution dataset

This paper analyzes data that were collected using the Carnegie
Mellon University mobile laboratory, which is equipped with real-
time instruments to measure black carbon (BC; Magee Scientific
AE31 Aethalometer), air toxics (e.g., benzene and toluene), PB-PAH
(EcoChem PAS2000), NOx, SO2, O3, and CH4. The mobile monitoring
campaignwas conducted in two phases, and Table 1 summarizes all
the data.

Phase I of this study and the mobile laboratory have been
described in detail previously (Tan et al., 2014a). Briefly, the Phase I
monitoring domain included the city of Pittsburgh and its imme-
diate suburbs (Fig. S1). The monitoring was conducted during the
2011e2012winter (Nov 2011eFeb 2012) and the 2012 summer (Jun
2012eAug 2012). A total of 42 sites were selected using random
sampling stratified by elevation (valley or upland) and traffic vol-
ume (high or low traffic). Eight sites were valley sites with low
traffic, 11 sites were valley sites with high traffic, 13 sites were
upland sites with low traffic, and 10 sites were upland sites with
high traffic. Monitoring sites included different neighborhoods
within the city, suburban sites, and locations near major pollution
sources.

The mobile laboratory was driven along a prescribed driving
route at each site. While some applications of mobile monitoring
sampled specified intersections in a cloverleaf pattern, such as
Larson et al. (Larson et al., 2009), the roadway network in Pitts-
burgh was not always conducive to this strategy. Instead, each
sampling site is defined as the centroid of a driving route consisting
of local major and minor roadways. Points along the driving route
were within 250 m of the sampling site, and were within the same
stratum (e.g., valley and low traffic). The mobile laboratory was
typically driven ~5 mph below the posted speed limit (25 mph for
most roads). We avoided high-speed highway driving, and avoided
following specific vehicles, such as diesel trucks and buses, that
could have high emissions that might skew estimates of site
average concentrations. Mobile measurements were performed in
three periods in both seasons to cover different times of day:
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