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h i g h l i g h t s

� We tackle the problem of estimating the location and the distribution of an atmospheric polluting source.
� We use Bayesian inference as a main framework, to be able to quantify the uncertainty.
� We derive an analytical way to estimate the release-rate by exploiting Gaussian assumptions on its prior distribution.
� We estimate the location by using an adaptive Monte Carlo algorithm based on the principles of Importance Sampling.
� We test our algorithm on a combination of synthetic and experimental data taken from the FFT07 experiment.
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a b s t r a c t

In the eventuality of an accidental or intentional atmospheric release, the reconstruction of the source
term using measurements from a set of sensors is an important and challenging inverse problem. A rapid
and accurate estimation of the source allows faster and more efficient action for first-response teams, in
addition to providing better damage assessment.

This paper presents a Bayesian probabilistic approach to estimate the location and the temporal
emission profile of a pointwise source. The release rate is evaluated analytically by using a Gaussian
assumption on its prior distribution, and is enhanced with a positivity constraint to improve the esti-
mation. The source location is obtained by the means of an advanced iterative Monte-Carlo technique
called Adaptive Multiple Importance Sampling (AMIS), which uses a recycling process at each iteration to
accelerate its convergence.

The proposed methodology is tested using synthetic and real concentration data in the framework of
the Fusion Field Trials 2007 (FFT-07) experiment. The quality of the obtained results is comparable to
those coming from the Markov Chain Monte Carlo (MCMC) algorithm, a popular Bayesian method used
for source estimation. Moreover, the adaptive processing of the AMIS provides a better sampling effi-
ciency by reusing all the generated samples.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The threat of chemical, radiological, biological, and nuclear
(CRBN) releases in the atmosphere is a key issue. Such incidents
may be the consequence of intentional releases using non-
conventional methods in order to create panic. The origin of

these releases can also be accidental, for example given a leak of
hazardous material on an industrial site. Either way, the develop-
ment of tools to reconstruct the source is of utmost importance for
the population safety as well as for the efficiency of the first-
response teams action.

Scientifically speaking, the question of source term estimation
(STE) is a challenging inverse problem, due to its ill-posed nature.
First, there is the issue of the non-uniqueness of the source
reconstruction solution: for a given set of concentration measure-
ments obtained by the sensors, there may be several possible
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source terms that would fit the observations. This problem is
aggravated by the fact that the observations could occasionally be
non-representative of the reality, because of the errors introduced
in the acquisition process such as the sensor noise, or the potential
averaging of the measurements done by the receptors. Next comes
the fact that the process of estimating the source may easily be
jeopardized, due to the physical mechanisms it relies on: themicro-
meteorological parameters involve complex processes which may
provide quite different outputs in certain conditions, should those
parameters vary in small or large amplitudes.

To solve the problem of STE, several methods have been
developed, using different approaches. The most physically intui-
tive one is the use of inverse transport, which consists in running an
atmospheric dispersion model backward in time, from the obser-
vation times to the release times (Robertson and Langner, 1998;
Pudykiewicz, 1998). The backward model relies on an adjoint
transport equation, which is derived by using the principle of time-
symmetry employed in atmospheric transport (Hourdin and
Talagrand, 2006): switching from the forward model requires
changing the sign of each term but the diffusion in the transport
equations. Here, the ill-posed aspect of the STE problem is treated
by resorting to a regularization process, allowing the construction
of a well-posed unique solution by minimizing a cost function. The
idea behind this is to penalize the non-desired solutions of the STE
problem by applying constraints on them, and to perform a
goodness-of-fit measure between the predicted concentrations
given by the model and the real observations. There are several
ways to optimize the cost function: one approach is to use genetic
algorithms, based on evolutionary computation, that runs a
selection-and-mutation process to a population of candidates in
order to provide the optimal solution (see Haupt et al., 2007; Allen
et al., 2007; Cervone et al., 2010; Cervone and Franzese, 2011;
Annunzio et al., 2012 for examples of genetic algorithms used in
the STE context). Several alternatives are available and have been
studied, such as the concept of illumination (Issartel, 2005), or
principles relying on information theory, such as the maximum
entropy on the mean (Bocquet, 2005).

Inverse modelling can also be viewed as a Bayesian problem
(Winiarek et al., 2011) where the expression of the cost function is
established using Bayesian inference, introducing probabilistic
considerations in the problem in order to obtain a point estimate of
the source parameters. One Bayesian inference strength is indeed
to be able to estimate the uncertainty factor regarding the esti-
mation. Another way of exploiting the Bayesian approach consists
in seeking not just for one optimal solution, but obtaining the
probability distribution of the source characteristics using the
Bayesian paradigm: in this case, the source is defined by a set of
parameters, which are the quantities of interest. By the means of
stochastic sampling, the posterior probability distribution of these
parameters is evaluated in order to fully describe the parameters of
the source and the uncertainty on them. The goal of STE is then to
look for the most probable parameters for the source in terms of
posterior probability. The most frequently used tool for sampling
from this posterior distribution in STE problems is the family of
Markov ChainMonte Carlo (MCMC) algorithms. In Keats et al., 2007,
MCMC is used to determine the source parameters in a complex
urban environment. In Senocak et al., 2008, the MCMC procedure is
embedded into a reconstruction tool that also assesses the wind
field parameters of the dispersion model. In Chow et al., 2008,
MCMC is implemented alongside a Computational Fluid Dynamics
(CFD) model that aims at improving the accuracy of the physical
model. In Delle Monache et al., 2008, a parallel processing scheme
using MCMC is built in order to reconstruct the source term of the
Algeciras incident. In Yee et al., 2014, MCMC is used to reconstruct
the location and the emission rate of a medical isotope production

facility using activity concentration measurements obtained from
the International Monitoring System radiological network. Overall,
MCMCmethods have proven to give good results, and their use has
extended to other similar purposes, such as water pollution
detection (Hazart et al., 2014) or natural gas seeps mapping (Hirst
et al., 2013).

The method we introduce in this paper offers an alternative way
of tackle this Bayesian inference problem, by developing an adap-
tive scheme based on the principle of Importance Sampling (IS).
This method allows to enhance the estimation process by learning
from the previous sampling rounds through a recycling process,
thus accelerating the convergence and reconstructing faster the
source term parameters. In Section 2, we describe the Bayesian
framework and the formalism of our study. In Section 3, we develop
the foundations of the methodology around the AMIS algorithm for
source location purposes. Finally, in Section 4, we implement our
solution to the STE problem using a framework derived from the
Fusion Field Trials 2007 experiment and compare its behaviour to
the MCMC, before concluding.

2. Bayesian modelling

In this paper, we are interested in estimating the unknown
characteristics q of a source, given the measurements, d, obtained
from all the sensors deployed in the field. More specifically, a
Bayesian solutionwill be designed for the inference in order to take
into account all the statistical information given by our problem. As
a consequence, the quantity of interest is the posterior distribution
given by the Bayes's rule as:

pðqjdÞ ¼ pðdjqÞpðqÞ
pðdÞ (1)

As we can see themain ingredients of Bayesian analysis are both
the prior distribution, p(q), and the likelihood distribution, p(djq).
The prior distribution represents the beliefs about the unknown
state before obtaining any observations. On the other hand, the
likelihood distribution gives the probability of obtaining the data
given a certain set of parameters values. p(d) represents the mar-
ginal likelihood and acts as the normalizing constant of the product
of the prior and likelihood distributions in order to obtain the
posterior distribution. Let us now specify both the likelihood and
the prior distributions for the problem considered in this paper.

2.1. The likelihood model

In this work, we consider a point-wise and static source repre-
sented by q¼(xs,q) where xs¼ (xs,ys) is the spatial position of the
source and q is the release rate vector resulting from the dis-
cretization of the plausible emission time interval intoTs time steps,
fDtngTsn¼1, in order to take into account the possible time depen-
dence aspect of the source.

Let us assume the concentration is measured at a finite number
of time points by a set of Nc sensors deployed in the field. The
observed concentration di,j acquired by the i-th sensor ci at location
xci and time tj, where i¼ 1,…,Nc and j¼ 1,…,Tcwith Tc the number of
time samples for each sensor, is modelled by:

di;j ¼
XTs
n¼1

qnCi;jðxs;DtnÞ þ εi;j (2)

The first term in the right-hand side of this expression corre-
sponds to the mean concentration resulting from the superposition
of the Ts releases on the different time steps fDtngTsn¼1 weighted by
the actual emission rates fqngTsn¼1 of the source. Ci,j(xs,Dtn)
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