Accepted Manuscript

Does urban forestry have a quantitative effect on ambient air quality in an urban environment?

P.J. Irga, M.D. Burchett, F.R. Torpy

PII: S1352-2310(15)30295-8

DOI: 10.1016/j.atmosenv.2015.08.050

Reference: AEA 14033

To appear in: Atmospheric Environment

Received Date: 6 July 2015

Revised Date: 18 August 2015

Accepted Date: 18 August 2015

Please cite this article as: Irga, P.J., Burchett, M.D., Torpy, F.R., Does urban forestry have a quantitative effect on ambient air quality in an urban environment?, *Atmospheric Environment* (2015), doi: 10.1016/j.atmosenv.2015.08.050.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Does urban forestry have a quantitative effect on ambient air quality in an urban environment?
2	
3	
4	P.J. Irga, M.D. Burchett, F.R. Torpy
5	
6	
7	Plants and Environmental Quality Research Group, School of Life Sciences, Faculty of Science,
8	University of Technology Sydney, P.O. Box 123,
9	Broadway, NSW 2007, Australia
10 11	Corresponding author email: Fraser.Torpy@uts.edu.au; telephone +61 2 9514 4150
12	
13	Key Words: PM_{10} , $PM_{2.5}$, vehicular traffic, air pollution, particulate matter, urban vegetation
14	
15	
16	Abstract
17	Increasing urban greenspace has been proposed as a means of reducing airborne pollutant concentrations;
18	however limited studies provide experimental data, as opposed to model estimates, of its ability to do so. The
19	current project examined whether higher concentrations of urban forestry might be associated with quantifiable
20	effects on ambient air pollutant levels, whilst accounting for the predominant source of localized spatial
21	variations in pollutant concentrations, namely vehicular traffic. Monthly air samples for one year were taken
22	from eleven sites in central Sydney, Australia. The sample sites exhibited a range of different traffic density,
23	population usage, and greenspace / urban forest density conditions. Carbon dioxide (CO ₂), carbon monoxide
24	(CO), total volatile organic compounds (TVOCs), nitric oxide (NO), nitrogen dioxide (NO ₂), sulfur dioxide
25	(SO_2) , total suspended particulate matter (TSP), suspended particles <10 μ m in diameter (PM ₁₀) and particulate
26	matter <2.5 μ m (PM _{2.5}), were recorded, using portable devices. It was found that air samples taken from sites
27	with less greenspace frequently had high concentrations of all fractions of aerosolized particulates than other
28	sites, whilst sites with high proximal greenspace had lower particulates, even when vehicular traffic was taken
29	into account. No observable trends in concentrations of NO, TVOC and SO_2 were observed, as recorded levels
30	were generally very low across all sampled areas. The findings indicate, first, that within the urban areas of a
31	city, localized differences in air pollutant loads occur. Secondly, we conclude that urban areas with
32	proportionally higher concentrations of urban forestry may experience better air quality with regards to reduced
33	ambient particulate matter; however conclusions about other air pollutants are yet to be elucidated.
34	
35	1. Introduction
36	
37	Air pollution is ubiquitous in industrialised and densely populated regions (Begg et al., 2007). Most urban
38	air pollution comes from road traffic, and is comprised of a mixture of airborne particulate matter (PM), oxides
39	of sulfur (SOx), oxides of nitrogen (NOx), carbon monoxide (CO), carbon dioxide (CO ₂), volatile organic
40	compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and ozone (Thurston, 2008). Outdoor air

41 pollution kills approximately 8 million people across the world every year (WHO, 2014), with a global cost of

Download English Version:

https://daneshyari.com/en/article/6337321

Download Persian Version:

https://daneshyari.com/article/6337321

Daneshyari.com