Accepted Manuscript

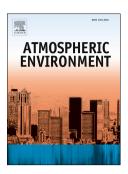
Ammonia Emissions in tropical biomass burning regions: comparison between satellite-derived emissions and bottom-up fire inventories

S. Whitburn, M. Van Damme, J.W. Kaiser, G.R. van der Werf, S. Turquety, D. Hurtmans, L. Clarisse, C. Clerbaux, P.-F. Coheur

PII: \$1352-2310(15)00233-2

DOI: 10.1016/j.atmosenv.2015.03.015

Reference: AEA 13689


To appear in: Atmospheric Environment

Received Date: 5 December 2014

Revised Date: 6 March 2015 Accepted Date: 7 March 2015

Please cite this article as: Whitburn, S., Van Damme, M., Kaiser, J.W., van der Werf, G.R., Turquety, S., Hurtmans, D., Clarisse, L., Clerbaux, C., Coheur, P.-F., Ammonia Emissions in tropical biomass burning regions: comparison between satellite-derived emissions and bottom-up fire inventories, *Atmospheric Environment* (2015), doi: 10.1016/j.atmosenv.2015.03.015.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

AMMONIA EMISSIONS IN TROPICAL BIOMASS BURNING REGIONS: COMPARISON BETWEEN SATELLITE-DERIVED EMISSIONS AND BOTTOM-UP FIRE INVENTORIES

S. Whitburn 1 , M. Van Damme 1,2 , J.W. Kaiser 3 , G.R. van der Werf 2 , S. Turquety 4 , D. Hurtmans 1 , L. Clarisse 1 , C. Clerbaux 1,5 , P.-F. Coheur 1

Corresponding author. *E-mail Address*: simon.whitburn@ulb.ac.be; *Phone number*: +32 26502425.

Address: Chimie Quantique et Photophysique (CP 160/09)

Université Libre de Bruxelles

50 Avenue F.D. Roosevelt

B-1050 Brussels

Belgium

5

10

15

Abstract. Vegetation fires emit large amounts of nitrogen compounds in the atmosphere, including ammonia (NH₃). These emissions are still subject to large uncertainties. In this study, we analyze time series of monthly NH₃ total columns (molec cm⁻²) from the IASI sounder on board MetOp-A satellite and their relation with MODIS fire radiative power (MW) measurements. We derive monthly NH₃ emissions estimates for four regions accounting for a major part of the total area affected by fires (two in Africa, one in central South America and one in Southeast Asia), using a simplified box model, and we compare them to the emissions from both the GFEDv3.1 and GFASv1.0 biomass burning emission inventories. In order to strengthen the analysis, we perform a similar comparison for carbon monoxide (CO), also measured by IASI and for which the emission factors used in the inventories to convert biomass burned to trace gas emissions are thought to be more reliable. In general, a good correspondence between NH3 and CO columns and the FRP is found, especially for regions in central South America with correlation coefficients of 0.82 and 0.66, respectively. The comparison with the two biomass burning emission inventories GFASv1.0 and GFEDv3.1 shows good agreements, particularly in the time of the maximum of emissions for the central South America region and in the magnitude for the region of Africa south of the equator. We find evidence of significant non-pyrogenic emissions for the regions of Africa north of the equator (for

¹Spectroscopie de l'Atmosphère, Chimie Quantique et Photophysique, Université Libre de Bruxelles, Brussels, Belgium

²Faculty of Earth and Life Sciences, VU University Amsterdam, The Netherlands

³Max Planck Institute for Chemistry, Mainz, Germany

⁴UPMC Univ. Paris 06; Ecole Polytechnique, CNRS/INSU, LMD-IPSL, Palaiseau, France

⁵UPMC Univ. Paris 06; Université Versailles St-Quentin; CNRS/INSU, LATMOS-IPSL, Paris, France

Download English Version:

https://daneshyari.com/en/article/6337417

Download Persian Version:

https://daneshyari.com/article/6337417

<u>Daneshyari.com</u>