Accepted Manuscript

Observation and simulation study of atmospheric aerosol nonsphericity over the Loess Plateau in northwest China

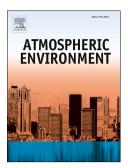
Pengfei Tian, Xianjie Cao, Lei Zhang, Hongbin Wang, Jinsen Shi, Zhongwei Huang, Tian Zhou, Hui Liu

PII: S1352-2310(15)30219-3

DOI: 10.1016/j.atmosenv.2015.07.020

Reference: AEA 13956

To appear in: Atmospheric Environment


Received Date: 8 February 2015

Revised Date: 9 July 2015

Accepted Date: 13 July 2015

Please cite this article as: Tian, P., Cao, X., Zhang, L., Wang, H., Shi, J., Huang, Z., Zhou, T., Liu, H., Observation and simulation study of atmospheric aerosol nonsphericity over the Loess Plateau in northwest China, *Atmospheric Environment* (2015), doi: 10.1016/j.atmosenv.2015.07.020.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	Observation and simulation study of atmospheric aerosol nonsphericity
2	over the Loess Plateau in northwest China
3	Pengfei Tian ^a , Xianjie Cao ^a , Lei Zhang ^{a,*} , Hongbin Wang ^b , Jinsen Shi ^a , Zhongwei Huang ^a , Tian
4	Zhou ^a , Hui Liu ^a
5	^a Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of
6	Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China
7	^b Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration,
8	Nanjing University of Information Science and Technology, Nanjing 210044, China
9	Abstract: Aerosol nonsphericity, which is not well depicted in model calculations,
10	seriously affects aerosol optical properties and subsequently alters the radiative
11	forcing of the earth-atmosphere system. Based on aerosol backscattering linear
12	depolarization ratio data observed by a polarization lidar at the Semi-Arid Climate
13	and Environment Observatory of Lanzhou University (SACOL) from September 2009
14	to August 2012 and numerical computations, the spatial and temporal distribution of
15	the aerosol depolarization ratio, parameterization of the derived aspect ratio and
16	influence of water vapor on aerosol nonsphericity were investigated. Aerosol
17	nonsphericity varied considerably by season, with a pronounced maximum in the
18	spring, when more nonspherical aerosols were transported upward to the free
19	troposphere; moreover, the column-averaged lidar depolarization ratios were 0.13,
20	0.09, 0.08 and 0.10 for the spring, summer, autumn and winter, respectively. The
21	derived aerosol aspect ratio, a simplified parameter that describes the particle
22	nonsphericity, ranged from 1.00 to 1.30 and peaked at approximately 1.06. A modified
23	log-normal function, which was fitted to the frequency distribution of the derived
24	aspect ratios, yielded a log-normal distribution parameterization for this parameter
25	and provided a better shape input for the aerosol optical modeling. The monthly
26	averaged aspect ratios reached a maximum of 1.13 during the spring and a minimum
27	of 1.04 in autumn. The depolarization ratios decreased significantly with

^{*} Corresponding author.

Email address: zhanglei@lzu.edu.cn (L. Zhang).

Download English Version:

https://daneshyari.com/en/article/6337745

Download Persian Version:

https://daneshyari.com/article/6337745

Daneshyari.com