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h i g h l i g h t s

� The impact of wind-blown desert to annual average PM10 concentrations was estimated.
� Hidden Markov models used to define and estimate regimes of PM10 concentrations.
� New methodology for calculating daily net PM10 loads from deserts.
� The modelling used complements other source apportionments techniques.
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a b s t r a c t

Source apportionment studies use prior exploratory methods that are not purpose-oriented and receptor
modelling is based on chemical speciation, requiring costly, time-consuming analyses. Hidden Markov
Models (HMMs) are proposed as a routine, exploratory tool to estimate PM10 source contributions. These
models were used on annual time series (TS) data from 33 background sites in Spain and Portugal. HMMs
enable the creation of groups of PM10 TS observations with similar concentration values, defining the
pollutant's regimes of concentration. The results include estimations of source contributions from these
regimes, the probability of change among them and their contribution to annual average PM10 con-
centrations. The annual average Saharan PM10 contribution in the Canary Islands was estimated and
compared to other studies. A new procedure for quantifying the wind-blown desert contributions to
daily average PM10 concentrations from monitoring sites is proposed. This new procedure seems to
correct the net load estimation from deserts achieved with the most frequently used method.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The main objective of many monitoring studies related to
atmospheric aerosols is the identification and apportionment of
pollutants to their sources. This information is crucial for the
development and implementation of policies protecting human
health and the environment as well as the design of effective miti-
gation strategies on a local or broader scale where the legislation
thresholds are exceeded. Source apportionment (SA) is the practice
of obtaining information about pollution sources and their

contribution to ambient air pollution levels. There are three main
groups of SA techniques (Viana et al., 2008): (i)methods that involve
the assessment of monitoring data, (ii) methods that rely on emis-
sions inventories and/or atmospheric dispersionmodelling, and (iii)
methods based on the statistical evaluation of the chemical data on
particulate matter gathered from receptor sites (receptor models or
RMs). The first group is considered to be based on basic numerical
data treatment (Belis et al., 2013). It also includes simple time series
(TS) modelling of data that may be used, for instance, to estimate
natural PM10 contributions from deserts (Escudero et al., 2007a).
The second one includes models to simulate aerosol emission for-
mation, transport and deposition, although they are limited by the
accuracy of emission inventories, when available. The third group is
especially used for airborne particulate matter. The foundational
principle of RMs is based on amass balance between the emitter and
the receptor, which assumes that the mass and species remain
constant from one to the other or experience minimal change.

Abbreviations: HMM, Hidden Markov Model; PM10, particulate matter with
aerodynamic diameter of 10 mm or less; RB, regional background; RM, receptor
model; SA, source apportionment; TS, time series.
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In addition to this classification, a basic statistical analysis is
recommended before undergoing any SA study, which should
include time-trend analyses or statistical distribution fitting that
may describe the data sets under study (Belis et al., 2014). Simple
statistical methods such as correlations or time-trend modelling
are then used as an initial approach for suggesting SA or as a task
prior to applying the time-consuming and more expensive RMs in
which chemical speciation is required. Exploratory methods are
varied and are not really SA oriented. Moreover, a strong statistical
theory to back them is missing. More robust SA results can be ob-
tained if the advantages of different types of modelling are com-
bined, since no single model is completely adequate due to the
theoretical assumptions. This represents themotivation behind this
work.

Hidden Markov Models (HMMs) are scarcely used in predicting
air quality due to their limited ability to accurately forecast
pollutant concentrations (Dong et al., 2009). This limited ability is
caused by the Markov property, by which only the present state
provides any insight into the future behaviour of the process (in-
formation regarding the history of the process does not reveal
anything new about the process). If no predictive statistics are
desired with respect to pollutant concentration, HMMs show
promise as flexible general purpose models for univariate (Capp�e
et al., 2005) and multivariate TS analyses (Zucchini and
MacDonald, 2009), while at the same time allowing for relatively
easy and straightforward interpretation (Visser et al., 2009; Visser,
2011).

HMMs constitute a starting point for SA based on the study and
characterisation of PM10 TS, clustering their observations over time
in homogeneous groups or regimes of concentrations. In this study,
Gaussian HMMs are applied to univariate PM10 TS obtained from
permanent background monitoring sites in the Iberian Peninsula
and the Canarian, Balearic and Azorean Archipelagos. Interesting
properties of HMMs are also applied to determine the probability of
change between regimes or to obtain the average concentrations of
the TS. The modelling was applied to the data relying on the au-
thors' prior knowledge of SA as a prerequisite. To that end, the case
of the Temisas site in Las Palmas de Gran Canaria Island (Canary
Islands, Spain) is analysed. The SA on this archipelago has been
previously studied by other authors (Rodríguez et al., 2001; Viana
et al., 2002; Querol et al., 2004) and high contributions of partic-
ulate matter due to the transport of air masses from the Sahel and
Sahara deserts (North Africa) has been confirmed.

This study aims: (i) to propose the use of homogenous HMMs as
a routine exploratory tool to complement other SA techniques to
estimate PM10 contributions from different sources; and (ii) to
introduce a newmethod for deriving the dust net load from deserts
using HMMs.

This study is outlined as follows. In Section 2 the data used in
this study and the structure of the HMMs are explained. Section 3.1
deals with the application of HMMs to the Temisas site TS during
2013, defining their regimes, estimating different apportionments
and how these regimes contribute to the annual mean PM10 con-
centration in this area. Sections 3.2 and 3.3 extrapolate this appli-
cation to rest of the analysed sites, on a geographical and temporal
scale, respectively. In Section 3.4 a new method for estimating
contributions from deserts is proposed and finally concluding re-
marks are given in Section 4.

2. Material and methods

2.1. Monitoring sites and data

In this work, data sets of daily averages of PM10 concentrations
collected at 33 background sites on the Iberian Peninsula and the

Azorean, Balearic and Canarian archipelagos (Table SM.1 in
Supplementary Material) have been studied at different years. Of
these sites, 28 belong to the Spanish Ministry of Agriculture, Food
and the Environment (MAFE) and are included in the Iberian
background network for the detection of African episodes (Querol
et al., 2013a), with 13 of them also being included in the EMEP
(Co-operative Programme for Monitoring and Evaluation of the
Long-Range Transmission of Air Pollutants in Europe) network
(EMEP, 2014). The Comiss~ao de Coordenaç~ao da Direcç~ao Regional
(CCDR) do Centro, CCDR do Alentejo and Direcç~ao Regional do
Ambiente dos Açores from Portugal manage 5 of these monitoring
sites. The used data were provided by these Portuguese institutions
and MAFE after validation.

The PM10 concentrations from the monitoring sites were
determined using the gravimetric and automatic (beta-radiation
attenuation and TEOM) methods. Therefore, in order to harmonise
the TS data, the measurements were corrected by applying the
correction factors obtained by a comparison with the gravimetric
method (EN-12341, 1998). Occurrences of daily episodes of in-
trusions of particulate matter during 2013 due to North African
transport of air masses applied in this work were established by
P�erez et al. (2014) using a combination of methods (Querol et al.,
2009), including HYSPLIT modelling (Draxler and Rolph, 2003).

2.2. Model definition

HMM is a time-dependent process generated by two interre-
lated probabilistic mechanisms, in which one is an underlying and
hidden process, and a series of hidden states, while the other is the
TS observation sequence determined by the current hidden state of
a given Markov chain (Rabiner, 1989). HMM represents a flexible
method of modelling TS that exhibits dependence over time as well
as average PM10 concentrations collected in air quality monitoring
networks. In most HMM applications, the hidden state outputs are
represented by Gaussian distributions. Modelling daily average
PM10 concentrations sampled during a year represents a problem
because of the impossibility of capturing the asymmetrical distri-
bution of this pollutant in a single distribution (e.g. log-normal
distribution). One way to address this problem is to use multiple
(a mixture) Gaussians to approximate the real distribution.

The model consists of two parts: firstly, the daily average PM10
concentrations (observations) which describe a TS of length T, and
secondly, unobserved states, satisfying the Markov property, which
are responsible for generating the observations. The states are
hidden to the observer who just perceives the TS observations. The
Markov property ensures that the highly temporal-dependent na-
ture of PM10 concentrations on consecutive days is taken into ac-
count, a property which may be assumed when one day's
concentration shows dependency on that of the previous day.
States are distinct elements of the HMM, N being the number of
states of the model. This number is also used to name the HMM
(e.g. an N-state HMM).

In Fig. 1, how one hidden state transitions to another state
generating the observations of an annual TS (T ¼ 365) is first
depicted and then the elements of an HMM are defined. For the
sake of simplicity, this example uses a two-state HMM and the first
five observations (from the first day -t¼ 1- to the fifth -t¼ 5-) of the
TS are explained. Hidden states are denoted by circles and possible
transitions among hidden states by arrows, with their probabilities
given. The path generating the observation is indicated by high-
lighted arrows and blue circles. In the beginning (t¼ 1), the Markov
chain is initialised according to the initial state probability distri-
bution d¼ (1,0) and starts at state 1. Then the hidden state transfers
from the initial state to the next state according to a transition
probability matrix (A), which describes the probabilities for all the
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