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h i g h l i g h t s

� A statistical model to provide real time hourly forecasts of NO2 is presented.
� Non-parametric kernel regression is applied in parallel with multiple linear regression.
� The model has low computational resources and requires simple input data.
� IA values of between 0.74 and 0.94 were obtained.
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a b s t r a c t

This paper presents a model for producing real time air quality forecasts with both high accuracy and
high computational efficiency. Temporal variations in nitrogen dioxide (NO2) levels and historical cor-
relations between meteorology and NO2 levels are used to estimate air quality 48 h in advance. Non-
parametric kernel regression is used to produce linearized factors describing variations in concentra-
tions with wind speed and direction and, furthermore, to produce seasonal and diurnal factors. The basis
for the model is a multiple linear regression which uses these factors together with meteorological
parameters and persistence as predictors. The model was calibrated at three urban sites and one rural
site and the final fitted model achieved R values of between 0.62 and 0.79 for hourly forecasts and
between 0.67 and 0.84 for daily maximum forecasts. Model validation using four model evaluation
parameters, an index of agreement (IA), the correlation coefficient (R), the fraction of values within a
factor of 2 (FAC2) and the fractional bias (FB), yielded good results. The IA for 24 hr forecasts of hourly
NO2 was between 0.77 and 0.90 at urban sites and 0.74 at the rural site, while for daily maximum
forecasts it was between 0.89 and 0.94 for urban sites and 0.78 for the rural site. R values of up to 0.79
and 0.81 and FAC2 values of 0.84 and 0.96 were observed for hourly and daily maximum predictions,
respectively. The model requires only simple input data and very low computational resources. It found
to be an accurate and efficient means of producing real time air quality forecasts.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Air quality forecasts are required in the European Air Quality
Directive in instances where concentrations exceed or are expected
to exceed alert and information thresholds (EEA, 2011). Such
models need to be capable of being run routinely with minimum
resource requirements. Routine air quality forecasts are of high
importance from a public health, air quality management and sci-
entific perspective. Densely populated areas and urban locations

benefit significantly from air quality forecasting as population
warnings and emergency control measures can be implemented in
advance of pollution episodes. These forecasts should necessarily
be available 24e48 h in advance of the episode. Nitrogen dioxide
(NO2) is one of the main pollutants of concern (Environmental
Protection Agency, 2012) and varies temporally and spatially with
anthropogenic emissions and meteorological conditions (Jensen,
1998). Emissions due to transport or fossil fuel combustion
depend on human activity but their effects on concentrations at a
particular receptor are also influenced by meteorology and the
nature of the receptor. The current study is concerned with pro-
ducing 24 and 48 h forecasts of hourly and daily maximum NO2 at
rural and urban sites.
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Statistical modelling has been found by many countries to offer
a viable and attractive alternative to large scale deterministic
models when developing operational air quality modelling capa-
bilities (e.g. Lissens et al., 2000; Chaloulakou et al., 2003; Cobourn,
2007). Like deterministic models, statistical models tend to be
comprised of different smaller models. A major advantage of sta-
tistical models is that they can be developed from first principles
specific to the area of interest, removing reliance on third party
model suppliers. Zhang et al. (2012) in their recent review of real
time air quality forecasting systems note that while statistical ap-
proaches generally require a large quantity of historical measured
data under a variety of conditions, they often have higher accuracy
when compared to deterministic models.

This study presents an elegant model which requires minimal
computing facilities for the prediction NO2 concentrations out to
48 h. The model is created by combining a time series model
(parametric and non-parametric), a nonparametric kernel regres-
sion model and a multiple linear regression model. Emission
sources are represented by temporal concentration profiles pro-
duced by the nonparametric kernel regression model, removing
any requirement for an emissions inventory.

2. Methodology

2.1. Calculation

The basis for the air quality prediction is a multiple linear
regression (MLR) which uses as inputs:

� Linear factors generated from a non-parametric kernel regres-
sion model

� Forecast meteorological parameters.

The method builds on previous research by the authors which
applied a two dimensional non-parametric kernel regression tech-
nique to quantify the effects of wind direction and speed on back-
ground NO2 concentrations (Donnelly et al., 2011, 2012). In
parametric regression, sampledata areused toestimate thevaluesof
the regression coefficients. Such regression is linear if the response
variable is assumed to be a linear function of the regression co-
efficients. Previous work by the authors found that the variation in
NO2 concentration levels with wind speed and direction was non-
linear but was well described using non-parametric kernel regres-
sionmethods.Nonparametric regression relaxes the functional form
assumed in parametric regression, the object being to estimate the
regression function directly, rather than to estimate parameters
(Donnelly et al., 2011). A further distinguishing feature of nonpara-
metric regression is “thenonexistence of an inclination to reduce the
number of parameters in the equation” (Takezawa, 2005).

Donnelly et al. (2011) tested a powerful tool for the quantification
of the effects of wind direction and speed on background NO2 con-
centrations, particularly in caseswheremonitoring data are limited.
In contrast to frequently used methods such as data binning, non-
parametric regression allows concentrations values in missing
datapairs tobeestimatedanddistinctionbetweenspurious and true
peaks in concentrations to be made. Accurate identification of the
actual variationat each location andcausative factors couldbemade,
thus supporting the improveddefinition of concentrations for use in
air qualitymodelling studies. The output from the regression is a set
of linearized factors for each wind speed/wind direction pair which
can then be used as inputs to the MLR.

The model development, calibration and validation is described
in the following section and it is helpful to read this in conjunction
with Fig. 1. The general form of the model is:

C ¼ b0 þ
Xn
i¼1

bixi þ
Xm
i¼1

diyi þ ε

where C is the response variable (NO2 concentration), b0 is the
regression constant, the xi are the meteorological predictor vari-
ables with coefficients bi, and the yi are the predictor variables
output from the non-parametric and time series models with co-
efficients di. ε is the stochastic error associated with the regression.
A least squares techniquewas used to determine the coefficients for
each of the following predictor variables:

yi - Factors developed for each site
� The wind speed, wind direction factor as output from the
nonparametric regression (WSWDf)

� Non-parametric seasonal factor (Sf)
� Non-parametric diurnal factor (Df)
� Time series forecast factor (TSf)
xi - Variables measured at each site
� Hourly temperature, Sunshine, Relative humidity, Atmo-
spheric pressure, Stability class

� Hourly NO2 concentration at 24 or 48 h lags (NO2h-24, NO2h-
48)

� Daily average NO2 concentration at 24 or 48 h lags (NO2d-24,
NO2d-48)

� Daily maximum NO2 concentration at 24 or 48 h lags
(NO2max-24, NO2max-48)

� Daily average O3 concentration at 24 or 48 h lags (O3d-24,
O3d-48)

� DailyminimumO3 concentration at 24 or 48 h lags (O3min-24,
O3min-48)

WSWDf was developed using non-parametric kernel regression
(as described in Yu et al., 2004; Donnelly et al., 2011) and is
calculated as follows:

WSWDf ¼
~Cðw;u; h;gÞ

C

Where C is the average concentration for the entire time series and
~Cðw;u; h;gÞ is the average concentration of a pollutant for a given
wind direction/speed pair ðw;uÞ calculated as aweighted average of
the data in a window (of width defined by smoothing parameters h
and g using weighted kernel function
Kðw;u;h;gÞ ¼ K1ðw;hÞK2ðu;gÞ around ðw;uÞ and defined as follows:

~Cðw;u; h;gÞ ¼
PN

i¼1K1

�
ðw�WiÞ

h

�
K2

�
ðu�UiÞ

g

�
Ci

PN
i¼1K1

�
ðw�WiÞ

h

�
K2

�
ðu�UiÞ

g

�

where Ci, Wi and Ui are the observed concentration of a particular
pollutant, resultant wind direction and speed for the ith observa-
tion in a time period starting at time ti. For circular data such as
wind direction the Gaussian kernel (K) is the preferred method
used to weight the observations (Henry et al. 2002) and is defined
as follows:

K1ðxÞ ¼ ð2pÞ�1=2 exp
�
�0:5x2

�
�∞< x<∞

The Epannechnikov kernel is used for wind speed as it is the
simplest bounded kernel (Yu et al. 2004):
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