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data sharing a common downwind orientation with respect to the roadway were analyzed. The aggre-
gate results show a three-fold increase in black carbon (BC) concentrations within 10 m of the edge of
roadway, in addition to elevated nanoparticle concentration and particulate matter with aerodynamic
diameter <1 um (PN;) concentrations. A 30% reduction in ozone concentration near the roadway was
observed, anti-correlated with an increase in the oxides of nitrogen (NOy). In this study, the pollutants
measured have been expanded to include polycyclic aromatic hydrocarbons (PAH), particle size distri-
bution (0.25—32 pm), and ultra-violet absorbing particulate matter (UVPM). The raster sampling scheme
combined with spatial and temporal measurement alignment provide a measure of variability in the near
roadway concentrations, and allow us to use a principal component analysis to identify multi-pollutant
features and analyze their roadway influences.
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1. Introduction

An appreciation for the complexity of pollutant dispersion and
aging away from roadways in diverse urban environments has
motivated innovation of new extensive monitoring designs,
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including mobile monitoring (Matte et al., 2013). Mobile moni-
toring platforms have been used to detect localized air pollution
phenomena and to characterize their spatial and temporal extents.
For example, mobile monitoring was used to detect dust carried by
traffic out of industrial areas in the City of Hamilton, Ontario,
Canada (DeLuca et al., 2012), to identify neighborhoods in Los
Angeles impacted by heavy-duty diesel traffic servicing the port
(Kozawa et al.,, 2009), and to identify ultrafine particle (UFP)
“clouds” in neighborhoods impacted by roadway configurations
(Hu et al, 2012) and the airport (Hudda et al., 2013). Mobile
monitoring has also been used to help identify urban areas of high
wood smoke impact (Larson et al., 2007), and urban areas with high
levels of traffic related black carbon (BC) (Larson et al., 2009).

Mobile monitoring has been implemented to characterize
pollutant concentrations as a function of distance-to-roadway in a
variety of scenarios including roadway type (Kozawa et al., 2009),
the presence of topographical features (Hagler et al., 2010), mete-
orology (Kozawa et al., 2012; Zhu et al., 2006), seasonal effects
(Padro-Martinez et al., 2012), and time of day (Bukowiecki et al.,
2002; Durant et al., 2010; Hagler et al.,, 2010; Hu et al., 2009;
Massoli et al., 2012; Pattinson et al., 2014). As such, mobile moni-
toring presents the possibility to characterize spatio-temporal
features of air pollutants under a variety of conditions. The re-
sults of such campaigns may improve predictive models for traffic-
related air pollution, thereby advancing the science behind adverse
health effects associated with distance to roadway.

Herein, we present a pilot study employing a mobile monitoring
platform developed at the University of Washington Center for
Clean Air Research to characterize near-roadway pollutant gradi-
ents. The sampling sites were residential neighborhood streets
adjacent to a major interstate in a location with flat topography and
no high-rise buildings resulting in a distinct line source with few
obstructions while remaining in an urban setting. The platform
recorded spatially and temporally aligned 10 s measurements of 10
different pollutant metrics, including polycyclic aromatic hydro-
carbons (PAH), particle size distribution (0.25—32 pm), and ultra-
violet absorbing particulate matter (UVPM). In this paper we
assess the correspondence of our single pollutant near roadway
gradients with those previously reported, and use principal
component analysis to reveal multi-pollutant features and analyze
their spatial relationship to the roadway.

2. Experimental methods
2.1. Sampling sites

Monitoring took place along the 1-40 corridor in Albuquerque,
NM on the Eastern side of [-25 as depicted in Fig. 1a. The city of
Albuquerque sits in a basin defined by the Sandia Mountain range
to the East and a volcanic mesa to the West. The Rio Grande River
meanders from North to South along the bottom of this shallow
basin. These features result in typical winds with a westerly
component. The section of I-40 chosen for this study consisted of
three westbound lanes and four eastbound lanes at the time of
monitoring. Fig. 1a includes a map of the two monitoring “sites”
situated on the North and South sides of I-40. A site is defined by a
collection of road segments within a selected area (see Fig. 1). A
highway off ramp was adjacent to the North site, but not the South
site. The monitoring sites were in residential neighborhoods con-
taining one- and two-story houses. We anticipated the flat topog-
raphy and absence of high-rise buildings at these sites would
simplify visualization and interpretation of near-roadway pollutant
gradients relative to more complex locations.

Fig. 1 illustrates the sampling sites are behind sound barriers at
the edge of roadway. These structures have the potential to alter
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Fig. 1. a) Sketch of Albuquerque and surrounding area, and map of the sample sites.
Sound barriers are denoted with a solid blue line. Colored dots represent GPS locations
of measurements from the 5 days of data analyzed. Color gradient trends red to blue
with increased distance from edge of roadway (black outline of 1-40). The route con-
sisted of the roads surrounding the shaded blocks for the dates 4/18—4/21. b) Wind
rose of 10 min average wind direction (direction of origin) and speed (m/s) as reported
by the Albuquerque International Sunport airport (7.8 km south of the monitoring
sites) from sampling times of a given day. Sampling days are denoted by color; 4/18/
2012 (pink), 4/20 (green), 4/21 (blue), 4/22 (orange), 4/23 (black). I-40's direction is
denoted as the dashed black line.

pollutant levels adjacent to the roadway depending upon wind
direction and speed, since these combine to create a variety of eddy
currents, as has been established by others (Baldauf et al., 2008;
Bowker et al., 2007; Finn et al., 2010; Hagler et al., 2011; Ning
et al.,, 2010; Steffens et al., 2013). The sampling sites in this study
are both completely behind the sound barriers, and are therefore
insufficient for a 2-dimensional analysis of barrier influences.
Instead, we reduced our data to one spatial dimension as others
have done (Massoli et al., 2012).

2.2. Monitoring platform

2.2.1. Instrumentation
The mobile monitoring platform consisted of a 2012 gasoline
powered Ford Escape with two sampling inlets mounted on the
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