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h i g h l i g h t s

� The newest SOA box models are computationally expensive.
� We present a novel technique to overcome these computational challenges.
� The technique uses probability distributions to represent discrete 2D SOA grids.
� Examining the strengths and limitations of the technique provides valuable insight.
� Potential solutions for overcoming the limitations are discussed.
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a b s t r a c t

The new generation of secondary organic aerosol (SOA) models that represent gas- and particle-phase
chemistry and thermodynamic partitioning using discrete two-dimensional grids (e.g. SOM, 2D-VBS)
cannot be efficiently implemented into three-dimensional atmospheric chemical transport models
(CTMs) due to the large number of bins (tracers) required. In this study, we introduce a novel mathe-
matical framework, termed the Oxidation State/Volatility Moment Method, that is designed to address
these computational burdens so as to allow the new generation of SOA models to be implemented into
CTMs. This is accomplished by mapping the two-dimensional grids onto probability distributions that
conserve carbon and oxygen mass. Assessment of the Moment Method strengths (speed, carbon and
oxygen conservation) and weaknesses (numerical drift) provide valuable insight that can guide future
development of SOA modules for atmospheric CTMs.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Secondary organic aerosol (SOA) formation ensues with ho-
mogeneous gas-phase reactions between volatile organic com-
pounds (VOCs) and oxidants (OH, O3, NO3), leading to products of
sufficiently low volatility to condense into the particle phase. For
most VOCs, the initial oxidant attack is followed by several gener-
ations of gas-phase reactions, involving functionalization or frag-
mentation reactions of the products (Jimenez et al., 2009).
Heterogeneous and particle-phase reactions may also play a

significant role in certain systems (Cappa and Wilson, 2012; Zhang
and Seinfeld, 2012). Whereas it is desirable to embody within a
model describing SOA formation as much basic understanding as
possible of the formation and evolution process, a key goal of SOA
model development is a computational module that can be
included in 3-dimensional atmospheric chemical transport models
(CTMs). Consequently, the challenge is to balance the desire for
chemical fidelity with the need for computational feasibility.

Aerosol Mass Spectrometer (AMS) measurements of organic
aerosols, now a routine component of atmospheric measurements
and chamber experiments, enable derivation of the atomic O:C and
H:C ratios of SOA, from which one can infer overall aerosol oxida-
tion state (Kroll et al., 2011). The volatility of the organic mixture is
related to themolecular properties of its components, as embodied,
for example, in carbon number and oxidation state. The relation-
ship between oxidation state and volatility is not unique; that is,
molecular mixtures with the same overall oxidation state do not
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necessarily exhibit the same overall volatility. Therefore, an
essential characteristic of an SOA model is the representation of
volatility and oxidation state.

The new generation of SOA models represents SOA formation
and evolution in terms of the competition between functionaliza-
tion and fragmentation, particle-phase chemistry, the extent of
oxidation, and the change of volatility. For instance, Pankow and
Barsanti (2009) introduced the “carbon number e polarity grid”
(CNPG) framework, which expands the traditional “2-product”
concept of Odum et al. (1996) to the “npþmP”, in which n products
with m possible types of low volatility compounds represent the
lumped oxidation and accretion products. The carbon number and
polarity of each product need to be evaluated according to the
current understanding of gas-phase SOA formation. SOA growth is
computed based on equilibrium partitioning theory (Barsanti et al.,
2011; Pankow and Barsanti, 2009).

Donahue et al. (2011) developed the two-Dimensional Vola-
tility Basis Set (2D-VBS) employing saturation mass concentra-
tion, C*, and the mean oxidation state, OS, of the aerosol to
describe the coupled aging and phase partitioning of SOA. A bin in
the 2D space represents a suite of molecules; an ensemble of
molecules with the same C* and OS is assumed to behave similarly
in the aggregate. When chamber data are available, the volatility
distribution of the products is obtained by SOA mass yield fitting.
A gas-phase photooxidationmechanism for a parent VOC provides
the functionalization and fragmentation channels leading to
products that map onto the 2D-VBS grid. A key issue is to assign
the SOA yield of each bin that potentially comprises a suite of
compounds sharing similar C* and OS (Donahue et al., 2012, 2011).

Cappa and Wilson (2012) formulated the Statistical Oxidation
Model (SOM) that describes SOA formation as a statistical evolution
in the space of numbers of carbon and oxygen atoms, nC and nO,
respectively, with fitted parameters that govern the probability of
fragmentation vs. functionalization, the number of oxygen atoms
added per functionalization reaction, and the decrease in vapor
pressure accompanying addition of an oxygen atom. An advantage
of SOM is that the functionalization channel is fully represented by
several free parameters so that no adjustment (e.g., molar yields for
each bin of 2-D VBS, distribution of functional groups in FGOM) is
required before optimal fitting of the free parameters to chamber-
generated SOA. A disadvantage is that predicted products do not
necessarily correspond to actual molecules (Cappa and Wilson,
2012).

Zhang and Seinfeld (2012) developed the Functional Group
Oxidation Model (FGOM), which is based on explicit functional
groups that result from the oxidation of a parent VOC, but also
characterized by a set of parameters that are determined by
fitting to chamber data. The progressive gas-phase oxidation
channel leading to a distribution of different functional groups is
generated according to specific VOC photooxidation mechanisms.
The fragmentation channel, particle-phase oxidative and non-
oxidative channels are represented by a set of adjustable pa-
rameters. The distribution and evolution of a set of functional
groups that can sufficiently represent the gas-phase photo-
chemistry of a certain hydrocarbon is required (Zhang and
Seinfeld, 2012).

In short, significant progress has been made in the develop-
ment of next-generation models to represent the formation and
evolution of SOA. However, the gap between the new class of 2D
SOA models and the computational requirements of 3D CTMs has
not been bridged. Specifically, each of the SOA models described
above, except the FGOM, represents the evolution of the SOA-
forming chemistry via a matrix of properties. Simulating the
physio-chemical evolution of such a matrix within a box-model
does not present a computational problem. However, in a 3D

CTM, the advectionediffusion equation requires each matrix to
be defined over the entire 3D grid so that matrices can be
transported between grid cells. Since a typical 3D grid may
contain thousands of grid cells, this poses a severe computational
burden. Consequently, the Odum 2-product model (Odum et al.,
1996), although now out of date, has remained the most
commonly used SOA parameterization in state-of-the-art 3D
CTMs (Barsanti et al., 2013). Therefore, computational simplifi-
cations need to be devised to implement any of the 2D SOA
models in a 3D model. Here we describe a new computational
approach, termed the Oxidation State/Volatility Moment Method
(hereafter referred to as the Moment Method). We focus on the
2D-VBS as exemplary of the new class of SOA models for
demonstrating the strengths and limitations of the new
approach.

2. Discrete 2D-VBS

In the 2-Dimensional Volatility Basis Set (2D-VBS) (Donahue
et al., 2012, 2011), SOA formation and evolution is represented by
lumping species into discrete bins according to their oxidation state
and the pure component saturation concentration (C*) of the
molecule. Donahue et al. (2011) originally used O:C ratio as the 2D-
VBS ordinate, whereas Donahue et al. (2012) use the mean oxida-
tion state of carbon, OS. Since O:C ratio and OS are intimately
linked, we use the O:C ratio as a measure of oxidation because, as
will be shown later, this allows the Moment Method to conserve
oxygen mass. At any instant in time, the 2D-VBS predicts the frac-
tion of the carbon atom concentration (i.e. the probability of finding
carbon) associated with molecules that have a given discrete O:C
and C*, defined here as Fg;p(O:C,C*) (g ¼ gas, p ¼ particle). The 2D
probability distributions are such that:X
O:C

X
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These probability distributions are combined with the total
carbon concentrations (C-atoms m�3) in the gas and particle pha-
ses, denoted by NCtot;g and NCtot;p, respectively.
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where, for example, C*may range from 10�5e109 mgm�3, separated
by powers of 10, and O:Cmay range from0 to 1, in increments of 0.1.
NCgðO : C;C�Þ and NCpðO : C;C�Þ are the portions of the carbon
atom concentration associated with molecules that have the
specified values of O:C and C* in the gas and the particle phases,
respectively. As will be shown later, the average number of carbon
atoms per molecule can be determined from the total carbon atom
concentration, C*, and the O:C ratio in each grid cell.
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