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a b s t r a c t

We present the exact analytical solution of the transient equation of gas-phase diffusion of a condensing
vapor to, and diffusion and reaction in, an aqueous droplet. Droplet-phase reaction is represented by
first-order chemistry. The solution facilitates study of the dynamic nature of the vapor uptake process as
a function of droplet size, Henry’s law coefficient, and first-order reaction rate constant for conversion in
the droplet phase.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The general overall atmospheric gas-to-droplet conversion
process comprises: (1) gas-phase diffusion from the bulk gas to the
surface of a droplet; (2) absorption into the droplet; and (3)
simultaneous diffusion and reaction inside the droplet. Step (1) is
controlled by the steady-state gas-phase diffusion flux to the
droplet surface and interfacial accommodation. (The time scale to
establish a steady state molecular diffusion profile in the gas phase
around a droplet of atmospheric size is of order 10�6 s (Seinfeld and
Pandis, 2006), so that the gas-phase concentration of the
condensing species around the droplet can be considered, at all
times, to be in steady-state.) The overall rate at which the process of
transfer of a species to the droplet phase occurs depends on its
solubility, its droplet-phase diffusivity, and the rate of its droplet-
phase chemical reaction. Coupled diffusionereaction problems of
this type have been simulated numerically (Shiraiwa et al., 2012)
and both analytically and numerically (Vesala et al., 2001; Zaveri
et al., 2013).

We present in this note the exact analytical solution to the
diffusion-reaction problem for first-order reaction in the droplet
phase. First-order reaction of the species in the droplet is not
overly restrictive, as the time scale for more complex chemistry
can be approximated by the inverse of the first-order rate

constant. The solution is first obtained for a bulk gas-phase con-
centration that is maintained constant. We then derive the
analytical solution for the case in which the bulk gas-phase con-
centration decreases with time owing to depletion by reaction in
the droplet.

2. Formulation of the problem

The mathematical formulation of the problem described above
is given by Shi and Seinfeld (1991) in the context of a solute dis-
solving and reacting in an atmospheric droplet. Let G(r,t) and A(r,t)
be the gas-phase and droplet-phase concentrations, respectively, of
the condensing species. The diffusive flux of the species into the
droplet (of radius a) is
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where a is the accommodation coefficient, the fraction of molecules
striking the interface that are incorporated into the droplet, v is the
mean molecular speed of the species in the gas phase, H is the
Henry’s Law coefficient for the species, R is the gas law constant, T is
the temperature, and Da is the diffusion coefficient of the species in
the droplet phase. In this formulation, the gasedroplet equilibrium
is represented in terms of a Henry’s law coefficient, as is appro-
priate for a relatively dilute droplet. The gas-phase concentration
profile G(r,t) around the droplet at all times can be taken to be the
steady state profile (Seinfeld and Pandis, 2006).
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Gðr; tÞ ¼ GNðtÞ � a
r
½GNðtÞ � Gða; tÞ� (2)

where GN(t) is the concentration of the condensing species in the
bulk gas phase. Equality of fluxes across the air-droplet interface
gives
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Combining Equations (1)e(3), we get
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Initially we consider the case in which GN(t) is a constant, GN;
that is, the concentration of the condensing species in the bulk gas
phase is maintained at a constant value.

The transient diffusionereaction problem in the droplet phase
obeys,
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where A1 is an arbitrary initial concentration in the droplet and

g ¼ vs
HRT

(10)

A0 ¼ HRTGN (11)

Using a transformation due to Danckwerts (See Supplementary
Material), the solution to equations (6)e(9) can be obtained from
that for the identical problem in the absence of reaction (k ¼ 0).
Calling the droplet-phase solution to the pure diffusion problem
C(r,t), the two solutions are related by

Aðr; tÞ ¼ k
Zt
0

Cðr; t0Þe�kt0dt0 þ Cðr; tÞe�kt (12)

3. Solution of the transient diffusionereaction problem

The solution of the pure diffusion problem, C(r,t), governed by
(6)e(9) with k ¼ 0 is (Crank, 1956; equation (6.40)),
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where bn are the roots of

bn cotðbnÞ þ L� 1 ¼ 0; L ¼ ag
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(14)

We show in the Supplementary Material the step-by-step
derivation of this solution.

Using equation (12), the full solution for A(r,t) inwhich GN(t) is a
constant, GN, is:

The above solution for the coupled diffusion-reaction problem
holds for a constant GN. We nowwish to extend that solution to the
case inwhich GN¼ Go at t¼ 0 but can decrease as a function of time
owing to uptake and conversion in the droplet phase. As GN

changes with time, the entire solution itself changes with time. The
fully time-dependent problem, in which GN is changing on the
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Fig. 1. Dimensionless bulk gas-phase concentration of the condensing species as a
function of time for a range of first-order reaction rate constant values.
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