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a b s t r a c t

Ionic transport through ionic exchange membrane cannot be interpreted by the Nernst–Planck equation
if the ion density is high, particularly in the membrane. In order to extend the density range, excess terms
must be added to the chemical potential. These terms are computed by considering charged hard spheres
embedded in a dielectric continuum. In this aim and owing to heterogeneity of the electrolytic solution
the density function theory (DFT) is used. A previous work has been carried out with a homogeneous and
amorphous solvent. Here an extension including the finite size of the solvent molecule and the local
dielectric properties via the dielectric coefficient is presented. The electro-osmosis is also examined. The
selectivity at equilibrium, the density profiles and the voltammograms are analysed. The numerical
results obtained with NaCl and CaCl2 show that the physical properties of the solvent decrease the
selectivity and increases the conductivity of the membrane systems. In the same time, the dielectric
properties increase the electro-osmotic effects on the ionic transport. The approach described in this
work can be used to study the solvent confinement effect inside the membrane on the ionic transport.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

The ion transfer and the spatial distribution of ionic species
profiles in electrochemical systems are usually modelled by the
Irreversible Thermodynamics (Onsager approach) or the Nernst–
Planck (NP) equation [1–5]. Ion transfer is sometimes interpreted
by the Stefan–Maxwell model [6]. In electrochemical engineering,
the conductivity and the selectivity properties of these systems are
described in a more realistic manner by taking into account of ion–
ion and ion-solvent interactions by means of the Debye–Hückel
activity coefficient, the Born solvation free energy and the electro-
osmosis [4,7,8]. Another important mechanism rarely studied is
the ion–membrane interaction via the ionic association [9].

Following the work of Gillespie et al. [10], the influence of the
coulombic ion–ion interaction on the selectivity and the ion
transport through an ion-exchange membrane has been studied
in a previous paper [11] by coupling the Poisson–Nernst–Planck
(PNP) equations with the Density Functional Theory (DFT). The
DFT allows computing more rigorously the activity coefficient than
the Debye–Hückel approach because it uses the direct correlation
function calculated by the statistical thermodynamics of fluids
[12,13]. Therefore this approach is more adapted to study the
electrolyte structure at high density of ions and in confined

domain [14–16]. However the DFT applied to the ionic fluids uses
the Mean Spherical Approximation (MSA) which assumes that the
ions are charged hard spheres immerged in a homogeneous
continuum dielectric [17]. This weakness is all the more important
that the solvent molecule has a finite volume and that the
dielectric coefficient is sensitive to the ion density.

In the present paper, we intend to use more realistic assump-
tions about the solvent properties. In this aim, the solvent is
considered as a neutral hard sphere containing a dipole at its
centre. Therefore two kinds of interaction are to be taken into
account: the hard sphere and the ion–dipole one. In the present
work, the ion–dipole interaction is not explicitly introduced in the
variational approach of the DFT but is included in the dependence
of the dielectric coefficient with respect to the ion density and in
the MSA solvation free energy. Fawcett [18,19] and Vincze et al.
[20] have shown that this method applied to homogeneous ionic
fluids is able to compute the activity coefficient of simple electro-
lytes in water. In the present work, it is not introduced in the DFT
in a rigorous way owing to the non-local character of the varia-
tional approach and owing to the unknown expression of the
electrostatic excess term of the Helmoltz free energy functional. As
a third kind of interaction, the finite volume of the ions and the
solvation mechanism induce a solvent displacement called
electro-osmosis.

Therefore, in a first part, the DFT–Poisson–Nernst–Planck (PNP/
DFT) equation set are briefly introduced, the solvent hard sphere,
the ion–dipole and the electro-osmosis are described. In a second
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part the numerical results are discussed. The effect of each
interaction mentioned above on the selectivity at equilibrium,
the density profiles and the transport properties are analysed
separately. In Appendix A and B the DFT/MSA model is summar-
ized and the numerical method is described respectively. The
values of the numerical parameters are mentioned in Appendix B.
The physical parameter values are gathered in Appendix C and in
Table 1. Appendix D is devoted to the fulfilment of the electro-
neutrality condition over the membrane system whatever the
potential drop and the value of the water transport.

2. Membrane system and transport model

2.1. Description of the membrane system

The membrane system consists in a negatively charged mem-
brane of length L embedded in a binary electrolyte solution the
density of which is ρo. The two baths on both sides of the
membrane have a length δ. So the membrane system length is
L+2δ. Along the membrane the fixed charge density Y is constant.
We assume that the membrane and the ions do not interact
chemically. The diffusion coefficient of species i Di is constant over
all the membrane system. Owing to the high values of ρo and of Y
used in this work, the dependence of the dielectric coefficient ε
with respect to the local ion concentration is taken into account.
The salt is NaCl and CaCl2. The solvent is water.

2.2. One-dimensional ion transport

Steady-state ion transport under concentration gradient and
external field is defined by the divergence free of the flux of each
species. If thermodynamic forces are small, the fluxes are linearly
dependent on these forces and the following one-dimensional
phenomenological relation is applied:

Ji ¼−
DiρiðxÞ
kT

∂μi
∂x

ð1Þ

where μi is the chemical potential defined at equilibrium, ρiðxÞ the
density of the species i located at x, k the Boltzmann constant, T
the absolute temperature. The DFT is used to derive the expression
of μi. The detail of the computation of μi, in a bulk solution
(without fixed charges) in which the dielectric coefficient is
constant, is given in Refs. [10,21] and is briefly presented in
Appendix A. With this approach, we obtain an extended Nernst–
Planck (NP) equation to high concentration in which additional
terms are associated to the ideal electrochemical potential μIDi
Eq. (A.2): and an electrostatic one μESi (Eq. (A.8)). The ions are
charged hard sphere, i.e. the potential has an infinite value at a
distance lower than Ri and has the coulombian expression at a
distance higher than Ri. μHSi represents the excluded volume effect
of uncharged spherical particles and μESi , computed with the MSA,
represents the ion size effect on the screening efficiency of the
electrical double layer located around each ion. These two con-
tributions depend on the density of all the ionic species. To the NP
equation the Poisson equation must be added in order to compute
the local electric potential Φ:

∂
∂x

εðxÞ ∂
∂x

ΦðxÞ
� �

¼ −e∑
i
ziρiðxÞ þ YðxÞ ð2Þ

where ε is the dielectric coefficient depending on the local
electrolyte density and e is the elementary charge, zi is the charge
number of species i.

2.3. Contribution of the ion–dipole interaction

In the following, we will consider the solvent in a more realistic
way. In the MSA, the solvent is only a homogeneous dielectric
continuum characterized by its dielectric coefficient. Now the
solvent is an uncharged hard sphere of radius Rw which contains
at its centre an electrical dipole. The hard sphere and the electrical
dipole contribution are treated separately. For the HS contribution,
the solvent must be considered as a new species but uncharged
and its transport obeys the NP equation. The dipole contribution is
treated at two levels: in the ion–ion interaction via the dielectric
coefficient ε and in the ion–dipole one via the solvation energy
which depends on ε also.

If the ion density concentration is low, ion transport is usually
computed assuming that the dielectric coefficient in the mem-
brane and in the reservoir is the same. However ε depends on the
local electric field strength. This effect is conventionally named
dielectric saturation [26,27]. The high strength of the electric field
is located inside the membrane and results from the fixed charges
at the pore surface. It is also located at the bath/membrane or
membrane/membrane interface in the over-limiting regime.
Usually the dielectric saturation is taken into account when the
influence of ion association or proton transport or water dissocia-
tion on the separation efficiency or on the conductivity is studied
[28–31].

In the present work, this phenomena is not taken into account.
The dielectric coefficient of the solute in the membrane and in the
reservoir depends on the salt density in the same way. The
concentration dependence of ε is considered as given (see
Appendix C).

In homogeneous electrolytes, the MSA links the chemical
potential to the first derivative of the Helmoltz free energy with
respect to the density and the direct correlation function to the
second derivative. These derivatives are carried out with Γ kept
constant. In inhomogeneous electrolyte, the same relations are
used but in the functional sense. However, in the variational
approach, the ES Helmoltz free energy functional is unknown.
This is why μESi is expanded with respect to the density around a
reference fluid (Eq. (A.8)): the zeroth order term is the MSA
chemical potential function and the expression of first order term,
i.e. the direct correlation function, is deduced from the computa-
tion of the electrostatic free energy of two overlapping charged
shells [22].

If we take into account of the dependence of ΔJSOL with respect
to the electrolyte composition, the following derivative must be
used:

∂
∂ρi

¼ ∂
∂ρi

���
Γ ¼ ρk k≠ið Þ ¼ ε ¼ cst

þ ∂ε
∂ρi

∂
∂ε

���
Γ ¼ ρk k≠ið Þ ¼ cst

ð3Þ

where Γ is the MSA screen parameter. So the zeroth order term of
the expansion is the corrected MSA chemical potential suggested
by Fawcett [19] and Simonin et al. [23] but with the ionic radius
kept constant. However, the derivatives must be carried out in the
reference fluid (see Appendix A). Using Eqs. (A.8) and (3), the first
order term becomes:

kT∑
j

R δ2AES ρref
k

ðyÞ
� �� �

δρrefi ðxÞδρrefj ðx′Þ

� �
Δρjðx′Þdx′

þkT∑
j

Z
∂ε

∂ρrefi

ðxÞ
δ2AES ρrefk ðyÞ

n oh i
δεðxÞδρrefj ðx′Þ

þ ∂ε
∂ρrefj

ðx′Þ
δ2AES ρrefk ðyÞ

n oh i
δεðx′Þδρrefi ðxÞ

0
@

þ
δ2AES ρrefk ðyÞ

n oh i
δεðx′ÞδεðxÞ

1
AΔρjðx′Þdx′ ð4Þ

where εðxÞ ¼ εðρrefk ðxÞÞ, ρrefk is the density of species i in the
reference fluid (Eq. (A.9)) and AES is the free energy functional.
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