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This article reviews Bayesian analysis methods applied to extreme climatic data. We
particularly focus on applications to three different problems related to extreme climatic
events including detection of abrupt regime shifts, clustering tropical cyclone tracks, and
statistical forecasting for seasonal tropical cyclone activity. For identifying potential change
points in an extreme event count series, a hierarchical Bayesian framework involving three
layers – data, parameter, and hypothesis – is formulated to demonstrate the posterior
probability of the shifts throughout the time. For the data layer, a Poisson process with a
gamma distributed rate is presumed. For the hypothesis layer, multiple candidate hypotheses
with different change-points are considered. To calculate the posterior probability for each
hypothesis and its associated parameters we developed an exact analytical formula, a Markov
Chain Monte Carlo (MCMC) algorithm, and amore sophisticated reversible jumpMarkov Chain
Monte Carlo (RJMCMC) algorithm. The algorithms are applied to several rare event series: the
annual tropical cyclone or typhoon counts over the central, eastern, and western North Pacific;
the annual extremely heavy rainfall event counts at Manoa, Hawaii; and the annual heat wave
frequency in France.
Using an Expectation-Maximization (EM) algorithm, a Bayesian clustering method built on a
mixture Gaussian model is applied to objectively classify historical, spaghetti-like tropical
cyclone tracks (1945–2007) over the western North Pacific and the South China Sea into eight
distinct track types. A regression based approach to forecasting seasonal tropical cyclone
frequency in a region is developed. Specifically, by adopting large-scale environmental
conditions prior to the tropical cyclone season, a Poisson regression model is built for
predicting seasonal tropical cyclone counts, and a probit regression model is alternatively
developed toward a binary classification problem.With a non-informative prior assumption for
the model parameters, a Bayesian inference for the Poisson regression model and the probit
regression model are derived in parallel. A Gibbs sampler is further designed to integrate the
posterior predictive distribution. The resulting Bayesian Poisson regression algorithm is
applied to predicting the seasonal tropical cyclone activity.
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1. Introduction

1.1. Concept of Bayesian inference

In principle, Bayesian analysis is grounded on a probabilistic
generative model of a process. With the generative model,
Bayes' theorem provides an approach to inferring one or more
parameters in a process from the observed data, where the
parameters are supposed to characterize theprocess of interest.
In the Bayesian viewpoint, probability can be used to quantify
degrees of belief of inference with given assumptions. Thus,
Bayesian inference deals with uncertainty of unknown param-
eters or hypotheses of interest in probabilistic forms. Under a
Bayesian framework, the unknown quantities are modeled as
random variables, instead of constants or fixed values. This
feature fits well with climate research because climate should
not be considered stationary but rather as something that is
always changing. When new information is obtained, prior
knowledge about the unknown quantities of interest is revised
accordingly. In this regard, Bayes' theorem provides a formal
mechanism to revise or update prior beliefs in light of new data

to yield posterior probability statements about the unknown
parameters or hypotheses.

The number of inference problems that can be tracked by
Bayesian analysis is enormous and across a lot of researchfields
(e.g., Berger, 1985; MacKay, 2003; Trotta, 2008). The general
paradigm of a Bayesian inference analysis can be sketched as
the hierarchical flow chart displayed in Fig. 1. On the top of the
Bayesian network is the hypothesis or model layer, which
defines ahypothesis ormodelwith its associatedparameter set.
Presumably, the observed data is sampled from this generative
model. Before observing the data, there is some subjective
belief of the hypothesis or model along with its associated
parameter set, which is termed as “prior”. Through the Bayes'
theorem, one can update the degree of belief of a hypothesis
and its relative parameters, yielding the “posterior” probability
of the hypothesis and parameter set of interest. Assuming a
hypothesisH is givenandwedenote theobserveddata byh, the
Bayesian formula to infer the parameter set θ is given by:

P θ jh;Hð Þ = P h jθ;Hð ÞP θ jHð Þ
P h jHð Þ =

P h jθ;Hð ÞP θ jHð Þ
∫
θ
P h jθ;Hð ÞP θ jHð Þdθ

∝ P h jθ;Hð ÞP θ jHð Þ:
ð1Þ

If thehypothesis ormodelH is unanimously accepted, Eq. (1)
provides the full solution for the inference problem.Note that, as
the denominator P h jHð Þ does not contain any information on
parameter θ, the likelihood term P h jθ;Hð Þ in Eq. (1) conveys all
the “new” information obtained from the data.

Fig. 1. A 3-layer hierarchical Bayesian analysis model.

Table 1
Raftery's guideline for interpreting the Bayes factor.

2lnB Evidence for Bayesian model

0–2 Not worth more than a bare mention
2–6 Positive
6–10 Strong
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