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a b s t r a c t

A Metropolis scheme that can be used by various Monte Carlo methods for solving particle
population balance equations has been proposed and verified. A detailed derivation of the
scheme is presented. The computational accuracy of the proposed scheme is tested under
various coagulation kernels. The computational performance of the scheme is also mea-
sured and compared to that of Inverse and acceptance–rejection scheme.

& 2015 Published by Elsevier Ltd.

1. Introduction

Coagulation is of great fundamental and practical interest owning to a rich variety of processes such as nanoparticle
synthesis (Hawa & Zachariah, 2005), colloidal suspensions (Yasrebi, Shih & Aksay, 1991), combustion (Khan, Wang & Lan-
gridge, 1971; Lehtinen & Zachariah, 2002), catalytic chemical process, and so on. Indeed, coagulation process of particles in
these processes influences not only the evolution of particle number, size distribution, but also the morphology of aggre-
gates. Quantitatively, the following population balance equation (PBE), introduced by Smoluchowski (Friedlander, 1997), is
well known for characterizing the evolution of particles in a coagulation process,
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where n v t,p( ) is in general the number concentration of particles with size at vp time t , u v,β ( ) is the coagulation rate
describing the frequency that two particles with volume u and v collide with each other. The first term on the right-hand
side describes the rate of production of particles of volume v due to the coagulation event between a particle of volume u
and a particle of volume v u( − ); the coefficient 1/2 is introduced to avoid counting collisions twice in the integral. The
second term indicates the rate of disappearance of particles of volume v due to collisions with any other particles.
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Various methods have been developed to tackle the foregoing PBEs. Broadly, these methods can be categorized into two
types depending on their different mathematical nature: the deterministic and non-deterministic methods. The typical
methods falling into the first category includes sectional method (Jeong & Choi, 2001; Landgrebe & Pratsinis, 1990;
Mitrakos, Hinis & Housiadas, 2007; Wu & Biswas, 1998), moments method (Brown, Kauppinen, Jokiniemi, Rubin & Biswas,
2006; Terry, McGraw, & Rangel, 2001; Yamamoto, 2004; Yu, Lin & Chen, 2007; Yu, Lin & Chan, 2008), wavelet method (Liu &
Cameron, 2001), etc. The non-deterministic methods involve primarily Monte Carlo (MC) methods (Efendiev & Zachariah,
2002; Garcia, Broeck, Serneels & Aertsens, 1987; Gillespie, 1976; Goodson & Kraft, 2002; Kruis, Maisels & Fissan, 2000; Lee &
Matsoukas, 2000; Liffman, 1992; Zhao, Kruis & Zheng, 2009). Owing to its stochastic nature, MC method is extremely
suitable for describing discrete, stochastic processes, such as particle coagulation, coalescence, etc. By converting coagu-
lation process into a statistical computer game, the numerical difficulties encountered in solving the complicated integro-
differential equation such as Eq. (1) are dramatically reduced, and the corresponding efforts in coding is also minimized.
Some advantages of a MC method over its deterministic counterparts can be summarized as: (1) it describes particle
dynamic event in a discrete manner without relying on a priori knowledge of particle system to be studied (e.g. particle size
distribution), therefore it is able to describe a dispersed system intrinsically and more accurately; (2) new property/function
with respect to simulation particles can be easily incorporated into the existing MC frameworks because each simulation
particle is treated as an individual, independent object in the context of a MC scheme; (3) MCs are simple in concept and
implementation.

One crucial step centered in various MC methods is how to pick a desired coagulation pair with some schemes that can
reflect the dynamical nature of particle coagulation processes. Two commonly used schemes by various MC methods are the
Inverse and acceptance–rejection (AR) scheme (Garcia et al., 1987). Each scheme has its pros and cons. Inverse scheme
chooses a coagulation event from among a given number of different possibilities by comparing a random number with a
sequence of accumulative coagulation probabilities (Garcia et al., 1987; Jacoboni & Reggiani, 1983). When no acceleration
technique is used (Kruis et al., 2000), the complexity of this scheme is of the order O ns

2( ), where ns is the number of
simulation particles.

Comparing with Inverse scheme, AR scheme selects a coagulated particle pair by means of a much simpler rule such as
(Garcia et al., 1987),
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where r is a random number which is uniformly distributed in the interval 0, 1( ), maxβ is the maximum coagulation rate
evaluated from the total particle pairs, i j,β( ) is the coagulation rate followed from the chosen particle pair i j,( ).

Nomenclature

A kernel-related constant
B1 modified Bessel function of the first kind
Cc Cunningham correct factor
d0 initial particle diameter (m)
dp particle diameter (m)
K Kf c( ) coagulation coefficient in different regimes

(m s5/2 1− )
Kn Knudsen number
M0 0th moment
nr times of simulation runs
ns simulation particle number
nt total number of time points
n v t,( ) particle number concentration ( /m3# )
N0 initial number concentration ( /m3# )
Np total number of particle pairs
N t( ) Particle number concentration at time t
Pk probability of finding particle with k primary

particles

Rc threshold value in 0, 1( )
r random number in 0, 1( )
t time (s)
v particle volume (m3)
v0 initial particle volume (m3)
v vmin max( ) minimum (maximum) particle volume (m3)
vt total particle volume (m3)
W transition probability
W acc acceptance probability
W prop proposal probability

cβ Brownian kernel in the continuum regime
(m s3 1− )

fmβ Brownian kernel in the free-molecule regime
(m s3 1− )

maxβ the maximum coagulation rate (m s3 1− )

meanε mean calculation error

gσ geometric standard deviation of particle size
τ average coagulation time step (s)

charτ characteristic time of coagulation (s)
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