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a b s t r a c t

In order to overcome uncertainties of semi-empirical models based on the flux matching
theory and to resolve discrepancies between more accurate interpolation formulas,
obtained from various solutions of the Boltzmann equation, a new approach, similar to
that recently proposed by the authors to consideration of the heavy vapour molecules
condensation, is applied to light vapours. In this limit the transport of light vapour
molecules to the central particle can be strictly considered as specific random walks,
characterized by the exponential distribution of the elementary displacement distances
for each walker migrating with a fixed speed and changing direction randomly, whereas
the condensation rate is related to the mean volume swept per unit time by the migrating
effective particle of radius equal to the radius of the central particle. Results of numerical
calculations of the condensation rate at different values of the Knudsen number are
approximated by the interpolation expression with a relatively high accuracy in compar-
ison with the traditional expressions.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The steady state flow of vapour molecules to a spherical particle in a sample of volume V-1, when the particle radius R
is sufficiently large compared to the mean free path λv of the diffusing (with the diffusivity D) vapour molecules (or
Kn¼ λv=R⪡1, where Kn is the Knudsen number), is given by Maxwell's solution of the continuum transport equation:

Fc ¼ 4πDR nv�nsð Þ; ð1Þ

where nv ¼Nv=V is the mean concentration of vapour molecules and ns is their saturation concentration (i.e. at vapour–solid
equilibrium). This expression can be applied to calculation of the spherical particle growth kinetics

1
Ωp

dVp

dt
¼ Fc; ð2aÞ

where Vp is the particle volume, Ωp is the volume of a condensed vapour molecule in the particle, or

dR
dt

¼DΩp

R
nv�nsð Þ; ð2bÞ
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under the steady state growth condition, R�1 dR=dt⪡τ�1
ss , where τss � R2=πD is the characteristic time for attainment of the

steady state solution of the vapour diffusion problem with the fixed value of R (i.e. with the immobile boundary), which can
be deduced from analysis of the general, non-stationary solution of the diffusion problem, Fc ¼ 4πDvR nv�nsð Þð1þR=

ffiffiffiffiffiffiffiffiffi
πDt

p
Þ

(cf., e.g. Fuchs, 1934). This provides an insignificant restriction on the applicability of the steady state approximation,
nv�nsð ÞΩp⪡π, and thus Eqs. (2a) and (2b) can be used with a good accuracy.

At the other extreme, Kn⪢1, the expression for the vapour flow based on the kinetic theory of gases can be used

Ffm ¼ πR2uv nv�nsð Þα¼ Ruvα
4D

Fc; ð3Þ

where uv ¼ 8kT=πmv
� �1=2 is the mean thermal speed of vapour molecules, α is the molecular accommodation coefficient.

Both expressions are no longer valid in the transition regime, when the mean free path of the diffusive vapour molecules
becomes comparable with the particle radius, Kn� 1.

Early investigations of Knudsen aerosol condensation used the flux matching theory of Fuchs (1934), that is, by
considering the non-continuum effects to be limited to a region RrrrΔ beyond the droplet surface and assuming that for
rZΔ continuum theory applies. The absorbing sphere radius Δ, then, is of the order of the mean free path λv and within this
inner region the simple kinetic theory of gases is assumed to apply. Fuchs, by matching the fluxes for the two domains at
r¼Δ, obtained the flux ratio as follows:

F
Fc

¼ 1þΔ=R
1þΔ=RþαRuv=4Dv

: ð4Þ

The value Δ was not specified in the original model and must be adjusted empirically or estimated by independent
theory. Several choices for Δ have been proposed; the simplest, due to Fuchs, is Δ¼ 0. Dahneke (1983) suggested Δ¼ λv, and
using λv ¼ 2Dv=uv in definition of the Knudsen number (designated here as KnDa), obtained

F
Fc

¼ 1þKnDa

1þ2KnDa 1þKnDað Þα�1; ð5Þ

but numerous other possibilities exist, as reviewed by Davis (1983).
Besides, the basic equations used in the flux matching theory cannot be strictly justified and thus the obtained

expressions for the condensation flux can be used only for qualitative consideration. Indeed, the diffusion equation for the
vapour molecules concentration, which is applied in the flux matching theory outside the absorbing sphere, is valid under
the general condition that the length scale L of the concentration variation is large in comparison with the mean free path,
L⪢λv. Taking into account that the diffusion concentration profile substantially varies outside the absorbing sphere (of radius
Δ� Rþλv) on the scale of L�Δ, the condition of the diffusion equation validity in the vicinity of the absorbing sphere takes
the form, Δ⪢λv, which results in R⪢λv. This condition significantly restricts applicability of the flux matching theory to small
Knudsen numbers, Kn¼ λv=R⪡1, i.e. only small corrections to the flux (Eq. (1)), in the near-continuum regime can be
properly evaluated in the flux matching approach.

The concentration distributions of the diffusing species and background gas in the transition regime are governed rigorously by
the Boltzmann equation. However, there does not exist a general solution to the Boltzmann equation valid over the full range of
Knudsen numbers for arbitrary masses of the diffusing species,mv, and the background gas,mg; nonetheless, the problem can be
studied more rigorously in the two limiting cases of heavy and light vapour molecules, when the partial vapour pressure is much
less than the gas pressure and thus the vapour–vapour collisions can be neglected.

The heavy vapour molecules with large z¼mv=mg⪢1 can be considered as Brownian particles and thus the condensation
rate can be calculated using the collision kernel of the Smoluchowski coagulation equation, as recently suggested by
Gopalakrishnan and Hogan (2011) and Veshchunov and Azarov (2012).

The problem can be simplified also in the opposite case of small mass ratio, z¼mv=mg⪡1. Different approaches to
consideration of this case was thoroughly analysed in the review paper of Davis (1983). The problem assumes considerable
similarity to the problems encountered in the neutron transport studies, under assumptions that the concentration and
velocity distribution of the gas molecules are only slightly perturbed by the evaporation process and that once a vapour
molecule encounters the surface of a particle its probability of sticking is unity, α¼ 1. Namely, it was noticed that the
problem of a flux, to a black sphere, of neutrons, diffused isotropically by heavy atoms, is completely equivalent to the
examined problem of droplet growth for this case, z¼mv=mg-0. The former problem has received considerable attention
from the workers in neutron transport theory and some more accurate solutions have been obtained. In this approach, Fuchs
and Sutugin (1971) fitted Sahni's (1966) theoretical solution to the Boltzmann equation by means of the expression

F
Fc

¼ 1þKnFS

1þ1:7104KnFSþ 4=3
� �

Kn2
FS

; ð6Þ

which correctly represents asymptotic solutions for large and small Knudsen numbers; however, becomes approximate in the
transition regime, where series expansion of the Bessel function (with a finite argument) in the integral equation analysed by
Sahni (1966) cannot be truncated after the first terms. Besides, some additional deviation of values calculated according to this
interpolation formula (Eq. (6)), from numerical results of Sahni attained 2–6%. The mean free path included in the definition of the
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