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a b s t r a c t

The unipolar diffusion charging of particles, i.e. the net increase in particle charge through
ion–particle collisions, is an important process in a number of aerosol systems. Accurate
methods are hence needed to predict the unipolar charging rate, not only for spherical
particles, but also particles of arbitrary geometry. In this work, the unipolar charging
(described by the particle–ion collision kernel) of conducting, arbitrary shaped particles is
studied theoretically. Through a combination of dimensional analysis, Brownian dynamics
(BD), and molecular dynamics (MD), the collision kernel is found to be described accurately
by a simple-to-use expression across the entire diffusive Knudsen number KnD range (from
the continuum regime to the free molecular regime), where KnD is the ratio of the ion mean
persistence path to a well-defined particle length scale (proportional to the ratio of
orientationally averaged projected area PA to the Smoluchowski radius Rs). In the developed
collision kernel expression, the effect of repulsive Coulomb and attractive image potential
interactions between the ion and the particle are parameterized by the coulomb potential
energy to thermal energy ratio, ψE, and image potential energy to thermal energy ratio, ψI. It is
found that the changes in collision rates due to potential interactions in the continuum
(KnD-0) and free molecular (KnD-∞) regimes collapse to particle geometry independent
functions, expressed in terms of ψE and ψI. In the transition regime, the dimensionless
collision kernel H is shown to be geometry independent, and is a function of a suitably
defined KnD only. Comparison is made between the predictions of the proposed expression
and the flux matching model of Fuchs; for non-spherical particles, theories available in the
literature are examined and commented upon. Finally, sample calculations of the mean
charge acquired by selected particle geometries are presented and discussed.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In unipolar diffusion charging, i.e. aerosol particle collisions with gas phase ions of a single polarity, knowledge of the
collision rate between nanoparticles and ions (the charging rate, defined as the number of collisions per unit volume per
unit time, with assumed charge transfer from ion to particle upon collision) is paramount, as it is this rate which ultimately
determines the charge distribution of nanoparticles upon timed exposure to ions of a given concentration. The charging rate,
Rp,i, for particles with p number of excess charges can be calculated from binary reaction kinetics as

Rp;i ¼ βp;inpni ð1aÞ
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where np and ni are the particle and ion number concentrations, respectively, and βp;i is the collision rate coefficient/kernel.
Correspondingly, the change in number concentration of particles with p charges over time is described by the equation:

dnp

dt
¼ Rp−1;i−Rp;i ¼ niðβp−1;inp−1−βp;inpÞ ð1bÞ

for positive ions, with the subscripts p−1 replaced with p+1 for negative ions. Evident in Eqs. (1a) and (1b), proper collision
kernel evaluation is thus required for both charging rate and charge distribution calculations. Collision kernels have been
predominantly determined using the flux matching approach of Bricard (1962) and Fuchs (1963). A number of aspects of the
charging process are captured by flux matching based analyses, including the combined influences of the Coulomb and
image potential, as well as the fact that particle–ion collisions may occur in different transport regimes. The transport
regime in which gas-phase entities migrate and collide with one another is determined by the ratio of the colliding entities'
persistence distance to a characteristic length scale for the collision. While Fuchs and earlier researchers did not explicitly
name this ratio, later authors have referred to the persistence distance to collision length scale ratio as the diffusive Knudsen
number, KnD (Dahneke, 1983; Pierce et al., 2006; Zurita-Gotor & Rosner, 2002), a term which is also adopted here. In the
continuum limit, in which the mean persistence distance is substantially smaller than the collision length scale ðKnD-0Þ,
moving entities behave diffusively with negligible inertia during collision events, and the collision kernel takes the form of
Smoluchowski's hard sphere collision kernel (Chandrasekhar, 1943) augmented by an enhancement factor for the potential
between colliding entities (Fuchs, 1963). In the opposing, free molecular limit ðKnD-∞Þ, entity motion is inertially driven
and ballistic, and the collision kernel can be derived from kinetic theory (Allen, 1992; Mott-Smith & Langmuir, 1926).
Flux matching theory is specifically developed for collision kernel calculation in the intermediate KnD range, which it
accomplishes by treating ion motion as diffusive when the ion and particle are sufficiently far from one another, and treating
motion as entirely ballistic when the ion is a distance less than the radius of a predefined “limiting sphere” from the particle
center.

In the absence of potentials, with an appropriate limiting sphere radius (Wright, 1960) the predictions of flux matching
theory agree extremely well with more rigorous derivations of the collision kernel in the transition regime (Loyalka, 1973;
Sahni, 1966; Takata et al., 1998). Furthermore, the modifications to flux matching theory proposed by Hoppel & Frick (1986)
do not alter its predictions for unipolar charging, wherein the particle is either uncharged or is of the same polarity as the
ion. Nonetheless, improvements can be made to flux matching theory derived collision kernels for unipolar charging; in
Fuchs's flux matching approach at the point when an ion approaches the limiting sphere, the ion's speed is equated with the
mean thermal speed, leading to incorrect collision kernel evaluation when the potential interactions between ion and
particle are significantly larger than the background thermal energy (Filippov, 1993; Gopalakrishnan & Hogan, 2012; López-
Yglesias & Flagan, 2013). Moreover, while in earlier studies selected nonspherical particle collisions with ions have been
analyzed close to the KnD-0 and KnD-∞ limits (Han & Gentry, 1993; Han et al., 1991; Mayya, 1990; Wen et al., 1984), and
Biskos et al. (2004) applied a flux matching-like approach to simulate the unipolar charging of selected nonspherical
particles, no simple-to-implement expression for the unipolar charging of arbitrary shaped particles under all possible
background gas conditions is hitherto available.

The purpose of this work is hence to develop an expression for the collision kernel for the unipolar diffusion charging of
conducting aerosol particles, where the assumptions made in deriving the expression are minimal. Specifically, our goal is to
develop a collision kernel expression which is a function of ion and particle properties, accounts for both repulsive Coulomb
and attractive image potentials between ion and particle, and can be extended reasonably to particles of arbitrary size and
shape. We utilize an approach distinct from flux matching theory to develop a collision kernel expression for unipolar
charging, involving combination of dimensional analysis, molecular dynamics, and Brownian dynamics calculations (Ermak
& Buckholz, 1980; Narsimhan & Ruckenstein, 1985). To date this approach has been successful in developing collision kernel
expressions for collisions between spheres (Gopalakrishnan & Hogan, 2011), vapor molecule condensation onto non-
spherical particles (Gopalakrishnan et al., 2011), collisions between spheres considering the Coulomb potential
(Gopalakrishnan & Hogan, 2012), collisions between two nonspherical particles (Thajudeen et al., 2012), and collisions
between spherical entities in the presence of singular contact potentials (Ouyang et al., 2012), throughout the entire KnD
range in all cases. The results presented here demonstrate that the dimensionless collision kernel expression for unipolar
charging can be collapsed to a function solely of the diffusive Knudsen number irrespective of the shape of the particle, as it
has been for the aforementioned gas phase collision processes.

2. Theoretical and numerical approach

The development of a collision kernel for unipolar charging requires (1) treatment of the electrostatic interactions
involved, (2) analysis in the continuum limit, (3) analysis in the free molecular limit, and (4) analysis in the transition
regime. Furthermore, to examine nonspherical particles, an appropriate set of particle test geometries is necessary. For this
purpose we use ensembles of point contacting spheres which are quasi-fractal in geometry (i.e. they satisfy the relationship
N¼ kf ðRg=aÞDf , where N is the number of primary spheres in each particle, a is the primary sphere radius, kf is a pre-
exponential factor, and Df is the fractal dimension (Friedlander, 2000)). We discuss the computational generation of a wide
range of quasi-fractal aggregate test geometries first, followed by discussion of (1–4).
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