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The methods chosen to calculate the average value of the concentration for any geochemical element should
depend on the probability distribution of the element abundance data. In this study, a fractal-based method
was introduced to estimate the mean concentrations of geochemical elements that follow fractal frequency dis-
tributions. The fractal-based method has been tested on two abundance datasets for Ag, As, Au, Cu, Pb, Zn, Ce, Cr,
and U from 529 floodplain sediment samples in China and from 10,927 stream sediment samples in Zhejiang
Province, China. We compared the fractal method with other methods, including the arithmetic averaging, geo-
metric averaging, and median, and found that there exist large discrepancies among these averages. The results
show that the average calculated using the fractal-based method is always smaller than the arithmetic average
and also generally smaller than the geometric mean and the median. The discrepancies may be attributed to
the fact that the datasets follow a fractal distribution rather than a normal or a lognormal distribution. This
study indicates that calculated arithmetic mean, geometric mean, or median may overestimate the average
concentrations for elements that follow a fractal distribution.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Estimating abundances of geochemical elements in the Earth's crust
is always a challenge for geochemists, and it has attracted the attention
of geochemists for at least 100 years. Element abundances are pivotal
background values for exploration of mineral resources and determina-
tion of environmental pollution levels. In all existingmodels for estimat-
ing chemical composition of the crust (e.g., Clarke, 1889; Clarke and
Washington, 1924; Gao et al., 1998; Goldschmidt, 1933; Taylor, 1964;
Taylor and McLennan, 1985; Wedepohl, 1995), element abundances
were derived from the averages of the compositions of surface expo-
sures. The key difficulties in deriving element abundances include:
(1) the tremendous geochemical heterogeneity of the crust, which
calls for a need to devise a method for the generalization of particular
data (Yaroshevskii, 2007); and (2) the reliability of the estimated
mean concentration. Sediments from floodplains (Darnley et al., 1995;
Xie and Cheng, 1997) and from continental river discharges
(Yaroshevskii, 2007) have been considered as an “average sample” for
materials of the crust exposed on erosion surfaces of continents, to
overcome the first difficulty. However, the second problem still exists
so far. Based on the assumption that concentrations in Earth's rocks
and sediments follow normal distributions, average concentrations
of geochemical elements were calculated by arithmetic averages

(Rock, 1988). It has been found (Ahrens, 1954a,b) that many elements,
especially trace elements, do not follow a normal distribution, but in-
stead show a skewed or a tailed distribution. Calculating the arithmetic
mean for skewed data will result in a biased (over) estimate of the cen-
tral value (Filzmoser et al., 2009a). In this case, data are usually
transformed by taking their logarithms, and then the normal model is
used to calculate the geometric mean for the dataset. However, in
many cases, a geometric mean is not appropriate because logarithms
of data may still exhibit a heavy skewed or a tailed distribution
(Chapman, 1976; Iqbal and John, 2010). Filzmoser et al. (2009a),
based on the concept of compositional data analysis, suggested that
when using an ilr-transformation for original data, it is possible to trans-
form the computed arithmetic mean of ilr-transformed data back to the
original data scale. However, as shown in Fig. 3 of Filzmoser et al.
(2009a), the distribution of Na2O is left-skewed; and it remains heavily
left-skewed after ilr-transformation.

The heavy skewed or tailed distribution mentioned above, together
with similar empirical discovery in many other application fields, has
resulted in the formulation of the fractal theory (Mandelbrot, 1983).
Original measured data from geochemical surveys can be regarded as
a height field defined over a certain domain. The pattern of a height
field is termed as geochemical landscape (geochemical surface). For
many minor or trace elements, the geochemical landscapes, like the
length of the famous Mandelbrot's coastline that commonly vary with
the scale of observation (sampling density), are undetermined (Li
et al., 2002, 2004), that is, in a given area, the denser one takes
samples, the more details one can obtain. This implies that minor or
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trace element abundance data probably follow fractal (power-law) dis-
tributions. In fact, many studies have provided strong support for the
hypothesis that the distribution of minor or trace element abundance
data is fractal (e.g., Allègre and Lewin, 1995; Bölviken et al., 1992;
Cheng et al., 1994; Li et al., 2002, 2003, 2004; Lima et al., 2003).

If the abundance of a geochemical element follows a fractal distribu-
tion, the average value should be estimatedwith a fractal-basedmethod
rather than conventional methods such as arithmetic averaging or geo-
metric averaging.

In this study, fractal averaging, a method based on fractal frequency
distributions, is introduced to calculate the average concentration of
geochemical elements. Hereinafter, the mean derived from the fractal
averaging is called “fractal mean”. This fractal-based method has been
tested on two abundance datasets for Ag, As, Au, Cu, Pb, Zn, Ce, Cr, and
U from 529 floodplain sediment samples that cover nearly most of
the land surface of China and from10,927 stream sediment samples col-
lected in Zhejiang Province, China. We compared the fractal method
with other methods, including the arithmetic averaging, geometric
averaging, and median, and found that there exist large discrepancies
among these averages.

2. Methodology

In general, a fractal (power-law) distribution is of the form

p xð Þ ¼ Cx−α
; ð1Þ

where p(x) is the number of objects with size x, and C and α are con-
stants, which can be determined from a dataset. The scaling exponent
α could be a fraction and is usually called the fractal dimension. The
density function diverges as x approaches zero, so there must be some
low bound (denoted as xmin) for this distribution. The normalization

constant C can be found from the constraint ∫∞
xmin

p xð Þdx ¼ 1, i.e., C =
(α − 1)xmin

α − 1, and the density function becomes

p xð Þ ¼ α−1
xmin

x=xminð Þ−α ð2Þ

Inmany practical applications, one of themethods to study data is to
calculate the cumulative distribution function (Newman, 2005). The
probability P(x) that the size X has a value greater than x is

P xð Þ ¼ P XNxð Þ ¼ ∫∞
x
p x′ð Þdx′: ð3Þ

If the distribution is fractal, substituting (2) into (3) and integrating
it yields

P xð Þ ¼ x=xminð Þ− α−1ð Þ
: ð4Þ

Thus the cumulative distribution function P(x) also follows a fractal
distribution, but with a flatter slope (scaling exponent), which is 1 less
than the exponent obtained from Eq. (1). The cumulative distribution
has an advantage in that it can reduce statistical fluctuations without
losing any information (Newman, 2005).

By definition, the ensemble mean for the fractal distribution can be
derived as

xh i ¼ ∫∞
xmin

xp xð Þdx ¼α−1
2−α

xmin
x

xmin

� �−αþ2jþ∞

xmin

: ð5Þ

It can be seen from Eq. (5) that the mean of the fractal distribution
depends on the scaling exponent α, which leads to several scenarios. If
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Fig. 1. Sampling locations of floodplain sediments for a wide-spaced geochemical survey in China.
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