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Advances in phenotyping technology are critical to ensure the genetic improvement of crops meet future global
demands for food and fuel. Field-based phenotyping platforms are being evaluated for their ability to deliver the
necessary throughput for large scale experiments and to provide an accurate depiction of trait performance in
real-world environments. We developed a dual-camera high throughput phenotyping (HTP) platform on an un-
manned aerial vehicle (UAV) and collected time coursemultispectral images for large scale soybean [Glycinemax
(L.) Merr.] breeding trials.We used a supervisedmachine learningmodel (Random Forest) to measure crop geo-
metric features and obtained high correlationswith final yield in breeding populations (r=0.82). The traditional
yield estimation model was significantly improved by incorporating plot row length as covariate (p b 0.01). We
developed a binary prediction model from time-course multispectral HTP image data and achieved over 93% ac-
curacy in classifying soybean maturity. This prediction model was validated in an independent breeding trial
with a different plot type. These results show thatmultispectral data collected from the UAV-based HTP platform
could improve yield estimation accuracy and maturity recording efficiency in a modern soybean breeding
program.
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1. Introduction

One of the greatest challenges of the 21st century will be to expand
crop production tomeet increasing demands for food, clothing, and fuel
brought on by both the growing human population and its increasing
affluence. The most environmentally friendly way to meet these de-
mands is through developing and providing highly productive crop cul-
tivars to farmers (Tester and Langridge, 2010). The recent biotech
revolution is impacting the power and efficiency of this crop improve-
ment process by increasing the capabilities of researchers to rapidly an-
alyze large populations of plantswith abundant geneticmarkers andwe
are on the brink of being able to fully sequence the genome of a large
number of plants in breeding programs (Thomson, 2014). However, ge-
netic analysis has its greatest value when it can be associatedwith plant
phenotypes. While our ability to analyze DNA is increasing at an expo-
nential rate, the capacity to phenotype plants in a field setting has not
improved nearly as rapidly. Advances in phenotyping technology are
critical to ensure the genetic improvement of crops to meet future
demands.

Conventional remote sensing applications are based on satellite and
manned aircraft to acquire visible (VIS), near-infrared (NIR), and short-
wave infrared radiation reflected and far-infrared radiation emitted by
the crop to estimate the yield potential and environmental stress for
large land areas (Atzberger, 2013). The reflectance of vegetation inmul-
tiple spectral regions have been shown to be good estimators of crop
biomass, yield, canopy coverage, leaf area index (LAI), chlorophyll con-
tent and plant senescence (Daughtry et al., 2000; Gitelson et al., 2003;
Hatfield and Prueger, 2010; Merzlyak et al., 1999; Penuelas et al.,
1994). However, the application of conventional remote sensing in
plant phenotyping for breeding purposes is limited by the expensive
targeted data acquisition and coarse spatial resolution (Wang et al.,
2010). The ideal phenotyping system for breeding programs requires
high throughput evaluation of resource capturing ability, utilization ef-
ficiency, and growth and development on a plot level while the crop
develops.

High throughput phenotyping (HTP) was first implemented in con-
trolled greenhouses and growth chambers by using automated imaging
systems to assess plant growth and performance (Luis Araus and Cairns,
2014). However, environmental factors and heterogeneous conditions
in thefield are not replicated in the controlled facilities. In addition, con-
trolled facilities do not have the space needed to evaluate the large
amount of germplasm in breeding programs. Field-based phenotyping
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platforms are being considered increasingly to deliver the necessary
throughput for large scale experiments and to provide an accurate de-
piction of trait performance in real-world environments (White et al.,
2012).

Researchers have been working on high resolution sensing systems
for agricultural settings. Unmanned aerial vehicles have proved to be
flexible platforms for sensing crop growth conditions (Xiang and Tian,
2011) and in-field crop monitoring towers (Ahamed et al., 2012) have
provided higher density data for near-real-time remote sensing. With
the recent advances in multi-rotor systems, UAVs have progressed as
a viable aerial platform for proximal remote sensing (Zhang and
Kovacs, 2012). In particular, UAVs can operate at a low altitude to cap-
ture images with ultra-high spatial resolution of up to 1 cm per pixel,
which is sufficient resolution for measuring individual field plots
(Turner et al., 2012). In addition, the system can be deployed on de-
mand with great flexibility to ensure optimal temporal resolution dur-
ing the crop growing season. Finally, the costs and technical skills
required to operate these platforms are becoming lower over time,
which makes the UAV-based HTP a promising solution for plant breed-
ing programs.

Plant breeding efficiency is limited by spatial field variability and
phenotyping capacity, which could be potentially improved using
UAV-based HTP platforms and the application of UAVs in field crop phe-
notyping was summarized by Sankaran et al. (2015). Spatial field vari-
ability usually results from agriculture management, soil
heterogeneity and variability in field topography. Such variation in a
breeding trial decreases the repeatability of the phenotypic traits evalu-
ated and the precision of the trait mean estimation of any given exper-
imental entry. Soil, nutrition and water spatial variation have been
reported to lead to large plot residual variance in multiple studies
(Cairns et al., 2013; Masuka et al., 2012; Robertson et al., 2008). The
UAV-based HTP was shown to capture field stress variation which can
be used to assist crop genetic improvement (Zaman-Allah et al.,
2015). In addition, non-pattern variation due to planting issues, which
is directly reflected as plot row length, is challenging to explain using
traditional biometric models, such as a randomized complete block de-
sign (RCBD) or nearest neighbor analysis. Therefore, characterization of
such randomvariability on a plot level and removal of these effects from
treatment variation are critical to increasing the genetic effect to noise
ratio.

Modern breeders take individual visual ratings andmeasurements
of plants to estimate important agronomic traits in much the same
way they did decades ago. Both biases among individuals taking the
data and subjective criteria create imprecision in phenotypic data col-
lection and the visual ratings are limited by what a human can visual-
ize at the ground level. In addition, it is difficult to take visual ratings
of the tens of thousands of lines evaluated in modern breeding pro-
grams. Such large populations are needed to achieve successful selec-
tion of multiple loci, which can be in linkage disequilibrium with
unfavorable traits or to dissect the genetic architecture of complex
traits (Dinka et al., 2007). Aerial spectral imaging has been shown to
deliver plant density estimations, physiological condition assess-
ments and stress detection in different crops (Gonzalez-Dugo et al.,
2015; Hunt et al., 2010; Liebisch et al., 2015; Thorp et al., 2008).
Therefore, a UAV-based HTP platform could be customized as a
quick and low-cost approach for agronomic trait evaluation to im-
prove the efficiency of crop breeding programs.

Random Forest (RF), a machine learning algorithm develops multi-
ple classification and regression trees (CART) based on a random subset
of the input variables using randomly selected bootstrap samples and
the ensemble of these trees are combined to ensure the prediction accu-
racy (Breiman, 2001). Random Forest has been found to be superior to
other machine learning algorithms because it is not sensitive to data
skewness, can easily handle a high number of model parameters, and
has fewer issues with overfitting (Horning, 2010). The applications of
RF in image analysis have been increasingly reported in remote sensing

classification studies (Guo et al., 2015; Peters et al., 2007; van Beijma et
al., 2014; Wiesmeier et al., 2011).

Our research aimed to establish a HTP platform based on a UAV
equipped with a multispectral sensor system through acquiring high
resolution image data followed by RF machine learning analysis to im-
prove soybean breeding efficiency. The first objective was to measure
the plot-based canopy geometric features and test the significance of
plot row length as a covariate in yield estimation models. The second
objective was to develop a machine learning model for binary soybean
plot maturity prediction using multispectral data.

2. Materials and methods

2.1. Experimental setup

The HTP remote sensing study was conducted at a three ha soybean
field located at Urbana, IL (40.053602 N, 88.235721 W) in 2014. Two
different breeding research trialswere planted in this field and these tri-
als were designated as GS and NAM. The GS trial represented a genomic
selection (GS) study containing 2980 plots from26populations and two
check cultivars (‘IA2102’ and ‘IA3023’). Each population consisted of ap-
proximately 110 recombinant inbred lines (RILs) developed fromdiffer-
ent breeding crosses. TheNAM trial included two experiments that each
contained 60 breeding lines from a nested association mapping (NAM)
study. These lines were replicated twice using a randomized completed
block design and there were 240 plots in the NAM trial. The GS trial was
planted on June 9, 2014 and the plots were single rows with a 0.76 m
row spacing and a 1.2 m length. The plots were not replicated and
were grown in blocks of 20 entries and each block included check culti-
vars. The NAM trial was planted on June 7, 2014 and the plots were four
rows wide with a 0.76 m row spacing and a 3.6 m length.

To ensure the geo-referencing accuracy of images collected by the
UAV HTP platform, 12 flat 61-by-61 cm cross-patterned wooden panels
were mounted on metal poles sunk into the soil to act as permanent
ground control points (GCPs) (Fig. 1A). The center position of each
panel was measured using the Trimble R8 GNSS system (Sunnyvale,
CA), which provided cm-level accuracy. In addition, a 122-by-122 cm
wooden board painted white and black in a four-cell checkerboard pat-
tern with paint-sand mix to create a near-Lambertian reflection surface
(Fig. 1B). This board was placed in the center of the field and used as a
reference object to account for different irradiance conditions at each
data collection time.

2.2. Development of the HTP platform

An autonomously flying octocopter, “X8” (3D Robotics, San Diego,
CA) was purchased as a ready-to-fly kit. Two Canon S110 point-and-
shoot digital cameras (Canon Inc., Lake Success, NY) were mounted
under the UAV to point at the nadir, one of which had been converted
for capturing NIR only. These digital cameras were equipped with com-
plementary metal-oxide semiconductor (CMOS) sensors, which are
sensitive to wavelengths between 350 nm and 1100 nm. Nijland et al.
(2014) reported when the infrared (IR) rejection filter in the digital
camera was replaced by 590 nm or greater long-pass filters, the Blue-
channel recorded IR only and was the second most sensitive to IR after
the Red-channel. According to the IR photography professional
company Kolari Vision (Raritan, NJ), more chromatic aberrations and
softer focus, which might decrease image quality, would occur with a
camera converted with a 590 nm or 665 nm filter compared to
720 nm or higher filters (kolarivision.com/articles/choosing-a-filter/).
Therefore, one of our cameraswasmodified into a standard NIR camera
using a 720 nm long pass filter by Kolari Vision, and the blue-channel of
the images taken by this modified camera was used to extract the NIR
information.
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