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Wildfire risk is increasing in the context of global change, and the need for accurate fuel model maps in broader
areas is becoming urgent to manage large wildfires. Among remote sensing technologies, Airborne Laser Scanner
(ALS) is extremely useful for fuel mapping as it provides 3D information on vegetation distribution. A cost-effec-
tive methodology to obtain high-resolution fuel model maps in large forest areas from ALS data (1 pulse/m?) and
Landsat-8 OLI images is presented. A two-phase approach was used to generate the fuel model maps: i) ad-hoc
Keywords: vegetation classification derived from ALS and Landsat-8 OLI, and ii) fuel model assignment based on fuel com-
LiDAR plex structure from a limited number of ALS-derived metrics: fractional canopy cover, fuel height, and canopy re-
ALS lief ratio. Fuel model maps for the Canary Islands (Spain) were generated for two fuel classification systems,
Landsat-8 OLI standard Northern Forest Fire Laboratory (NFFL) and specific Canarian fuel models (CIFM), at 25 m resolution
Fuel mapping (3678 km?) according to decision rules based on ALS-derived metrics developed for each vegetation type. Field-
Canary Islands work was used to validate the fuel model maps, obtaining an overall accuracy of 82% (kappa = 0.777) and 70%
Fuel models (kappa = 0.679) for the standard NFFL and CIFM fuel models respectively. Discrimination between fuel models
associated to forests with and without understory was satisfactory, showing higher errors due to species compo-
sition classification rather than to ALS-derived fuel structure. Errors due to underestimation of ALS-derived fuel
cover and height were more evident in mixed grassland and shrubland fuels. Results demonstrated the potential
of combining imagery and ALS for fuel model mapping at a large scale from existing data sources, even with low
laser pulse density and temporarily mismatched data sets. The proposed methodology may be applied for fuel
mapping in other large areas provided that ALS information is available and that fuel model definition has explicit
structure characteristics allowing decision rules based on ALS data. Once algorithms are defined for fuel model
assignment, the low number of ALS-derived metrics and the semi-automated processing ensures that fuel
model maps can be easily updated as new data sources become available providing managers with useful spatial
information in large areas.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction significant increase in the number and extent of forest fires during the

last decade, showing the highest increasing tendency in wildfire occur-

Wildfire risk and occurrence is increasing in many forest areas due to
the context of global climate change, which poses a major concern be-
cause of the environmental, societal and economic consequences
(Moreira et al., 2011; Moritz et al., 2012; San-Miguel-Ayanz et al.,
2013). In addition to climate, other factors such as ignition agents,
length of the fire season, vegetation characteristics and human activi-
ties, such as fire management policies and landscape fragmentation,
may greatly influence the fire regime in the next century (Flannigan et
al., 2000). As in other parts of the world, the Canary Islands had a
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rence in Spain (MAGRAMA, 2012). The situation is expected to worsen
due to the predicted extreme fire weather increase according to future
climate change scenarios, as longer fire intervals in conjunction with
land abandonment and fuel accumulation would make these areas
more vulnerable to catastrophic wildfires (Moritz et al., 2012;
San-Miguel-Ayanz et al., 2013).

Fuel characterization is key to wildfire prevention as forest fuel is
one of the primary factors affecting wildfire risk and behaviour. In the
context of wildfires, vegetation is grouped into different large classes
generally called “fuel types”. These classes vary according to different
classification schemes, which intend to summarize the main physical
characteristics (live and dead biomass, particle size, etc.) related to
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forest fuel flammability (fire spread, intensity, etc.). The term “fuel
model” is usually applied when referring to more detailed fuel types
defined by a numerical description of the relevant physical properties
of vegetation according to a particular fuel classification system
(Anderson, 1982; Scott and Burgan, 2005).

Landscape-level fire behaviour simulation models, such as the wide-
ly-used FARSITE (Finney, 1998) and FlamMap (Finney, 2006) software,
are becoming essential tools to support decision making. These fire be-
haviour models require spatial information on fuel characteristics in
continuous layers as input data. The need for accurate and spatially-ex-
plicit information on existing forest fuels in broader areas is becoming
urgent to prevent large forest fires and mitigate their negative effects
(Erdody and Moskal, 2010; Seielstad and Queen, 2003). However, tradi-
tional fuel mapping is highly expensive and time consuming. Hence,
managers often have to deal with old fuel model cartography, which
hinders getting realistic wildfire risk predictions.

Although LiDAR (Light Detection and Ranging) has been used more
recently in forest applications compared to other remote sensing
methods (Arroyo et al., 2008; Lefsky et al., 2002), this type of data is
proven to be extremely useful for forest fuel characterization
(Andersen et al., 2005; Riafio et al., 2003; Seielstad and Queen, 2003).
Airborne LiDAR, hereinafter referred to as ALS (Airborne Laser Scanner),
can be used to directly measure the three-dimensional structure of veg-
etation across large spatial areas (Duncanson et al., 2014; Evans et al.,
2009; Ferraz et al., 2012; Lefsky et al., 2002, 2005). The ability to detect
vertical distribution of forest stands at a fine spatial scale is a significant
improvement compared to other type of advanced remote sensing tech-
niques (e.g. satellite and aerial imagery from hyperspectral sensors),
which is making ALS an essential complementary tool to determine
fuel metrics (Erdody and Moskal, 2010) and fuel models (Garcia et al.,
2011; Mutlu et al., 2008). ALS is particularly interesting to discriminate
the presence of vertical fuel continuity, and thus to predict increased fire
danger associated to crown fire potential in forest stands. Some studies
have successfully estimated important fuel properties from ALS data,
such as fuel height, vegetation cover and several canopy parameters
(Andersen et al., 2005; Gonzalez-Ferreiro et al., 2014; Riafio et al.,
2003, 2007). However, being able to translate fuel models into ALS-de-
rived parameters requires an explicit characterization of vegetation
structure that is not always straight-forward depending on the fuel clas-
sification system used.

Despite technological improvements have led to the possibility of
gathering ALS data at high pulse densities (tipically considered above
1 point/m?), acquisition costs still limit the availability of this kind of
data in large areas (Jakubowksi et al., 2013a). In Spain, free ALS data
are provided for all the country at a low pulse density (0.5 points/m?)
by PNOA (Spanish National Plan for Aerial Orthophotography). Despite
the fact that higher laser pulse density is expected to improve accuracy,
previous studies (Gonzalez-Ferreiro et al., 2014; Jakubowksi et al.,
2013a) suggest that relatively low density ALS is sufficient to accurately
retrieve the required metrics for fuel mapping. ALS data can be used to
model canopy fuel properties, and obtain geo-referenced raster files on
detailed fuel characteristics that can be periodically updated (Gonzalez-
Ferreiro et al,, 2014).

Imagery data is useful for species identification, land cover and
coarse fuel-type classification, but is not suitable to estimate canopy
fuel structure and understory vegetation (Erdody and Moskal, 2010;
Falkowski et al., 2005; Riafio et al., 2002). Garcia et al. (2011) used a
Support Vector Machine (SVM) classification of the basic fuel types
(grassland, shrubland and trees) as the input for a second phase classi-
fication of fuel models according to the Prometheus scheme that relies
on fuel height and cover (European Commission, 1999). These authors
used a combination of ALS data to derive fuel vertical distribution and
multispectral imagery to better characterize vegetation composition
and structure. More detailed fuel classification systems require users
not only to discriminate tree stands from shrubland and grassland, but
also vegetation composition as fuel load can significantly vary among

species (Lydersen et al., 2015). In forest stands, understory composition
is particularly difficult to discern by remote sensing techniques, either
by ALS or passive sensors. Imagery could be used to provide this infor-
mation on sparse tree stands, but not in a multi-layer forest structure
with dense canopy closure where only species composition in the dom-
inant overstory layer could be detected. Moreover, the more detailed
the classification scheme is, the more difficult is to discriminate be-
tween fuel models. Considering similar spatial resolution and methodo-
logical approaches, fuel model assignment errors are more likely to
occur when using a specific fuel classification system (e.g. Scott and
Burgan, 2005) compared to standard classification systems (e.g. North-
ern Forest Fire Laboratory -NFFL, Prometheus).

Costs are generally a trade-off of accuracy. Although the integration
of ALS and optical data would generally improve fuel model maps
(Mutlu et al., 2008), some studies found only small increases in estima-
tion accuracy when fusing ALS data with imagery and/or LiDAR intensi-
ty compared to ALS alone (Erdody and Moskal, 2010; Jakubowksi et al.,
2013b). Erdody and Moskal (2010) highlight that cost analysis should
be taken into consideration when asking if it is necessary to use two dif-
ferent sensors for a marginal increase in accuracy when using just one
(ALS) gives excellent results.

Previous research on fuel mapping from ALS data are mainly focused
on relatively small extent areas (Garcia et al.,, 2011; Mutlu et al., 2008;
Gonzalez-Olabarria et al., 2012; Jakubowksi et al., 2013b). At a broader
scale, i.e. national or continental, there are also some studies that have
used spaceborne LiDAR data to indirectly account for vegetation height
in order to classify fuel types at low spatial resolution (Pettinari et al.,
2014). The main objective of the present work is to obtain fuel model
maps from ALS data and Landsat-8 OLI imagery at a high spatial resolu-
tion in the Canary Islands. The specific objectives are: (a) to develop a
cost-effective methodology to characterize forest fuels in large geo-
graphical areas (regional scale) that could be easy to update; and (b)
to compare the performance of ALS data for fuel mapping with different
fuel classification systems: specific fuel models adapted to the Canarian
vegetation vs standard NFFL fuel models. For this purpose, a two-phase
approach is proposed to generate the fuel model maps: i) vegetation
classification from ALS and Landsat-8 OLI to obtain ad-hoc groups ac-
cording to basic fuel types and species composition; and ii) fuel model
assignment based on fuel structure derived from ALS data and decision
rules specifically developed for the fuel classification systems used.

2. Material and methods
2.1. Study area

The study area comprised the five islands with presence of forest
lands in the Canary Islands archipelago, Spain (Fig. 1). These volcanic
islands are located in the Atlantic Ocean, in front of the northern African
coast, from 27°37’N to 29°25'N, and 13°20’W to 18°10’W. A total of
3678 km? are included in this work, covering grassland, shrublands
and tree stands, which represents on average the 74% of the area in
the islands (Table 1). Important protected natural environments, like
Teide National Park (Tenerife Island), Garajonay National Park (La
Gomera Island) and Caldera de Taburiente National Park (La Palma Is-
land), were included. Concerning topography, 31% of the study area
has steep slopes of over 30%. The general climate is subtropical but
with a high local variability depending on altitude (ranging from 0 to
3718 m above sea level) and north-south exposure, which results in a
wide variety of vegetation types (Fernandez-Palacios, 1992).

Among the forest stands, the most representative tree species is the
endemic Canary pine (Pinus canariensis C.Sm. ex DC.). It is found in pure
stands or mixed with other pine species (e.g. P. radiata D.Don) or ever-
green trees (tree heath, Erica arborea L., and wax myrtle, Myrica faya
Ait.). Another important forest ecosystem characteristic of more
humid climate is the laurel forest (called laurisilva), composed of Laurus
azorica (Seub.) Franco, Persea indica (L.) Spreng. or llex canariensis Poir.,
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