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Soil moisture is one of the essential climate variables for the Global Climate Observing System (GCOS) that has
been prioritized by the ESA's Climate Change Initiative to construct its homogeneous long-term climate record.
This requires a consistent characterization of the error structures in the individual data sets, which vary due to
changes in instrument configuration and calibration, and retrieval algorithm design. In this paper, the random
error and systematic differences in nine passive and active microwave satellite soil moisture products over Aus-
tralia (time coverage: 1978–present) are estimated in a same manner for SM components at subseasonal and
seasonal-to-interannual timescales separately. The multi-scale error structures are found to be non-trivial and
vary between the products, giving cause for conductingmulti-scalemergingwith awareness of these differences.
Noticeable similarities between the error structures of the satellite products derived from same retrieval algo-
rithm and same measuring frequency however suggest transferability of error parameters between them.
Using partial rank correlation analysis, the error maps are linked to statistics on vegetation index, digital eleva-
tion, soilmoisture and soil temperature, and land cover fractions andmixing in order to explain the observed var-
iability and the similarities between the products.
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1. Introduction

Soilmoisture (SM) is a key component in land-surface schemes and is
of great significance to atmospheric models (Douville & Chauvin, 2000),
(Koster et al., 2004), global climate models (Fennessey & Shukla, 1999),
hydrological models (Brocca et al., 2012; Alvarez-Garreton et al., 2015),
water resource models (Van Dijk & Renzullo, 2011), ecological models
(Yuste et al., 2007; Friend & Kiang, 2005), andmany others. In particular,
climatemodellers have long recognized that accurate descriptions of land
surface–atmosphere interactions mediated by SM are needed for under-
standing the causes and consequences of climate fluctuations on various
temporal and spatial scales. SM affects rainfall (Koster, Suarez, & Heiser,
2000), drought occurrence (Fischer, Seneviratne, Vidale, Lüthi, & Schär,
2007), heatwaves (Lorenz, Davin, & Seneviratne, 2012), and hydrologic
trends (Jung et al., 2006). Therefore, an accurate, long-term observational
SM data suitable for model initialization, analysis, and validation over a

greater range of situations and spatio-temporal scales is invaluable for
long-term studies related to climate change and water resources avail-
ability. The European Space Agency (ESA) Climate Change Initiative
(CCI) SM program (http://www.esa-soilmoisture-cci.org) is taking criti-
cal steps to close this gap bymerging past and present passive and active
microwave satellite observations to create a 1978–present climate record
of SM (Wagner et al., 2012a).

Microwave remote sensing is an established method for estimating
topsoil SM under a diverse of meteorological and land-surface condi-
tions. However, periodic changes of the spaceborne instruments, plat-
forms, sensor calibration, overpass times, and algorithms can induce
substantial time-varying systematic errors (i.e., biases) in a blended
product if the biases and random error statistics in individual satellite
SM products are not fully resolved before merging (Yilmaz, Crow,
Anderson, & Hain, 2012). For assimilating the satellite SM into models
for re-analysis, these observational errors must also be accounted for.

There are now severalmethods for estimating these errors in SMwith
variable degrees of sophistication, differing in their underlying signal and
error models, a priori assumptions about error characteristics, data
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requirements, and estimation principles. They include error propagation
during retrieval (Naeimi, Scipal, Bartalis, Hasenauer, & Wagner, 2009;
Parinussa, Meesters, et al., 2011), direct comparisons against in situ mea-
surements (e.g. Albergel et al., 2012; Jackson et al., 2010; Su, Ryu, Young,
Western & Wagner, 2013; Wagner et al., 2014), comparisons against
model-simulated SM (Reichle, Koster, Dong, & Berg, 2004; Al-Yaari et
al., 2014), power spectrum analysis (Su, Ryu, Crow, & Western, 2014b),
and an instrumental variable (IV) technique that encompasses triple col-
location (TC) analysis (Scipal, Holmes, de Jeu, Naeimi, & Wagner, 2008;
Dorigo et al., 2010; Draper et al., 2013; Leroux, Kerr, Richaume, &
Fieuzal, 2013; McColl et al., 2014; Gruber, Su, Zwieback, et al., 2016)
and lagged-based instrument variable (LV) analysis (Su, Ryu, Crow, &
Western, 2014a). Thesemethods do not necessarily yield directly compa-
rable results, especially when different choices of error metrics and refer-
ence data for defining the biases are made.

As the ESA CCI SM project enters its second phase that includes
evolving its phase-1 prototype ECV processor, this paper aims to pro-
vide deeper insights into the error structures in satellite SM products
used in the construction of its climate record. In particular, it addresses
the following questions: How should the error structure be parameter-
ized?How andwhydoes the error structure vary between the SMprod-
ucts derived from different sensors but with the same retrieval
algorithm? Can the error parameters be transferred between some of
the SMproducts? This is achieved through a comprehensive assessment
of the biases and random error in nine passive and active SM Level 3
gridded products over Australia. The passive products are derived
from Nimbus-7's Scanning Multi-channel Microwave Radiometer
(SMMR), Defense Meteorological Satellite Program (DMSP) satellites'
Special Sensor Microwave Imager (SSM/I), Tropical Rainfall Measuring
Mission (TRMM) Microwave Imager (TMI), Aqua satellite's Advanced
Microwave Scanning Radiometer-Earth Observing System (AMSR-E),
Coriolis satellite'sWindSat radiometer, Soil Moisture and Ocean Salinity
(SMOS), and Global Change Observation Mission-Water (GCOM-W1)
AdvancedMicrowave Scanning Radiometer-2 (AMSR2). And, the active
products are produced by Active Microwave Instrument (AMI) on the
two European Remote Sensing satellites, ERS-1 and 2 and the Advanced
Scatterometer (ASCAT) of the MetOp-A satellite. With the exception of
SMOS, these products were used in the construction of the latest prod-
uct release (v2.2) of ESA CCI SM. SMOS and ASCAT of MetOp-B are ex-
pected to be added in the future versions.

The model-simulated SM from MERRA-L (Modern Era Retrospec-
tive-analysis for Research and Applications-Land) (Reichle et al., 2011)
serves as a common reference to define the biases in all the products.
LV and ordinary least-square (OLS) regression are applied consistently
across the products to distinguish the levels of additive bias, multiplica-
tive bias and random error or unexplained variance in their subseasonal
and seasonal-to-interannual SM components separately. Such consis-
tency in the methodologies facilitates distinction of similarities and dif-
ferences between the products' error structures. Subsequently, partial
correlation analysis is used to link the estimated error maps with
land-surface properties in order to explain variability in the errors and
similarities between different satellite products.

This paper is organized as follows. Section2describes thenine satellite
SM data sets, the MERRA-L data used in the error analyses, and the ancil-
lary datasets used for the correlation analysis. Section 3 reviews the error
estimation methods, and identifies the possible variables for explaining
the estimated errormaps. Results are presented in Section4, and their im-
plications to SM retrieval, data merging, and land-data assimilation are
discussed in Section 5, which also offers our concluding remarks.

2. Data sets

2.1. Soil moisture data

The satellite SM products are described briefly as follows. Their spa-
tiotemporal coverage over Australia is shown in Fig. 1(a), and their

characteristics are summarized in Table 1. Fig. 1(b) shows the
timeseries of the spatial statistics of modelled SM fromMERRA-L.

2.1.1. LPRM passive soil moisture products
The Land Parameter Retrieval Model (LPRM) has been applied to es-

timate volumetric SM from the passive microwave observations from
multi-channel (multi-frequency and dual-polarization) radiometers
(Owe, de Jeu, & Holmes, 2008). These sensors include SMMR, SSM/I,
TMI, AMSR-E, WindSat, and AMSR2. They measured orthogonally-po-
larized microwave emission from land surface at C-band (4–8 GHz),
X-band (8–12 GHz) and/or K-band (18–27 GHz), as well as 37 GHz
(Ka-band). The C, X and K-band brightness temperature are related di-
rectly to soil dielectric constant of the top-soil layer through the radia-
tive transfer model of a vegetated soil surface. The retrieved dielectric
constant is subsequently converted to volumetric units via a soil–
water–air dielectric mixing model. LPRM uses the Ka-band data to esti-
mate top-soil temperature, which are inputs to the both models.
Distinguishing from the other retrieval approaches, LPRM uses the nor-
malized difference of the measured brightness temperature between
the two orthogonal polarizations to estimate vegetation optical thick-
ness (VOD).

LPRM has a relatively simple land-surface parametrization that in-
cludes the assumption of thermal equilibrium without distinguishing
the canopy-top temperature from soil temperature. It is therefore best
suited for night-time retrievals (Lei, Crow, Shen, Parinussa, & Holmes,
2015) and thus following ESA CCI SM, this work focuses on the night-
time retrievals from SMMR, TMI, AMSR-E and AMSR2 and the early
morning data (around 6 am) from WindSat and SSM/I. Over Australia,
the retrievals from AMSR-E, WindSat and AMSR2 are mostly based on
their C-band (6.9 GHz) observations. The versions of their Level 3
daily, gridded products are identical to those used for creating the ESA
CCI SM product. These products expressed in volumetric SM units are
spatially resampled to a 1/4 × 1/4° grid and temporally matched to
the closest daily 0 h UTC reference time step for merging in the ESA
CCI algorithm (Liu et al., 2012). Here we retain variable local observa-
tion times in our error analysis to avoid introducing timing errors.

2.1.2. ERS and ASCAT active soil moisture
TheAMI on the ERS-1 and 2 andASCATof theMetOp-A satellite have

used vertically-polarized backscatter at C-band at three different view-
ing directions to differentiate temporal vegetation and SM effects on the
signal (Naeimi et al., 2009). ERS-1 operated between July 1991 and
March 1996, and its successor ERS-2 was launched on April 1995
(Crapolicchio, Lecomte, & Neyt, 2005). Their intermittent coverage
(Fig. 1(a)) is attributed to conflicting operations with the synthetic ap-
erture rader (SAR) mode of the instrument, end of operation of ERS-1
in 2000, failure of ERS-2 tape drive in 2003 and mission completion of
ERS-2 in 2010. ASCAT has been operating from January 2007 to the pres-
ent day. The retrieval from the both instruments is based on a
timeseries-based change detection algorithm of Wagner, Lemoine, and
Rott (1999) that estimates current moisture status relative to historical
minima andmaxima, as a percentage of saturationwithin these bounds.
Thus this approach is less susceptible to the influence of surface rough-
ness as its variability occurs over a time scale longer than SM, and the
influence of vegetation is explicitly corrected with multi-incidence
angle observations. The active SM datasets were produced using the
Soil Water Retrieval Package (WARP) (Naeimi et al., 2009) (v5.5).
They are defined over a sinusoidal grid with a grid resolution of
~12.5−25 km, but were resampled to match the regular 1/4 × 1/4°
grid using aHammingwindowwith a latitude-dependent search radius.
Both day (around 10 am local time) and night (10 pm) retrieved data
are considered here because the retrieval performance is independent
of observation times (Lei et al., 2015). The porosity data resampled
from NASA's Global Land Data Assimilation System (GLDAS) was then
used to convert the relative saturation estimates to volumetric units.

129C.-H. Su et al. / Remote Sensing of Environment 182 (2016) 128–140



Download English Version:

https://daneshyari.com/en/article/6344916

Download Persian Version:

https://daneshyari.com/article/6344916

Daneshyari.com

https://daneshyari.com/en/article/6344916
https://daneshyari.com/article/6344916
https://daneshyari.com

