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Threemulti-decadal satellite soil moisture (SM) products, obtained bymerging two active and six passive, all-ac-
tive-merged (CCI-ACT), all-passive-merged (CCI-PAS) and all-active-passive-merged (CCI-COMBINED), and
Level-3 SM retrieved from Soil Moisture Ocean Salinity (SMOS) mission were evaluated over India. The evalua-
tion strategy employed is twofold: (a) time series and correlation analysis of SM datasets with respect to the
Modern Era Retrospective-analysis for Research and Applications-Land (MERRA-L) SM simulation and the
India Meteorological Department (IMD) gridded rainfall; (b) investigate the spatial distribution of random
error of the satellite products using Triple Collocation (TC) approach. The Pearson's correlation analysis showed
that the performance of CCI-ACT and CCI-COMBINED are comparable to each other and they agree well with the
MERRA-L simulated SM time series. They also had a good rank correlationwith rainfall. The randomerror fromTC
is represented in terms of fractional Root Mean Square Error (fRMSETC). It also represents the sensitivity of satel-
lite retrievals to changes in true state. The analysis of fRMSETC showed that descending swath of SMOS SM has a
lower error than ascending for 71% of the pixels over India. CCI-ACTwas found to have themost number of pixels
with the lowest errors, having amean fRMSETC of 0.7188, compared to 0.7705 for CCI-COMBINED, 0.7828 for CCI-
PAS and 0.8308 for SMOS-D. However, the error in CCI-ACT was highest in arid desert regions of western India.
The error in CCI-COMBINED, CCI-PAS and SMOS-D grew with an increase in vegetation density. The fRMSETC
mapswere analysed against themaps of the probability of occurrence of Radio Frequency Interference (RFI), Nor-
malized Difference Vegetation Index (NDVI), soil texture (percentage of clay, sand, and silt) and modified
Köppen-Geiger climate classification. The climate classification map was used to classify fRMSETC against the dif-
ferent homogeneous climate classes. The analysis of themaps revealed that the inconsistency in SMOS is because
of the RFI events over India. However, amultiple linear regression based attribution study showed that SMOS-D is
the least affected by vegetation (4%) and the spatial distribution of CCI-ACT and CCI-COMBINED error showed
more affinity towards soil texture than vegetation density.
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1. Introduction

Soil moisture (SM) is an important land surface control variable
influencing the coupling between land surface and atmosphere
(Charney et al., 1977; Delworth and Manabe, 1988, 1989; Koster et al.,
2000; Koster and Suarez, 2001; Hirschi et al., 2011).While investigating
the coupling strength between SM and precipitation during the multi-
model Global Land Atmosphere Coupling Experiment (GLACE), three
coupling hot spots were observed viz., over central India, equatorial Af-
rica and the great plains of north America (Koster et al., 2004). Keeping

these facts inmind, manymodeling studies had investigated the impact
of SM on the global climate (Seneviratne et al., 2013; IPCC, 2013; Whan
et al., 2015; Koster et al., 2010; Seneviratne et al., 2010; Seneviratne et
al., 2006). But there is noway to validate those resultswithout a reliable
global dataset of SM. Reliable estimates of SM can be obtained either by
employing accurate measurement systems or by the use of a land Data
Assimilation (DA) system. The skill of a DA system depends on the
error characteristics of both model and observation, a good DA system
needs not only a state-of-the-art model but also an accurate global ob-
servation system.

Space-borne measurements can facilitate a globally distributed SM
monitoring without the representation error associated with in-situ
measurements (Tolman, 1998; Gruber et al., 2013). These space-borne
sensors are able to provide a global coverage in 2–3 days. Many SM
products were retrieved from various space-borne sensors, both active
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and passive, using different radiative transfer models. But none of them
individually spans for a period long enough to study the climate dynam-
ics associatedwith SM. In this regard, Liu et al. (2012) used a new trend-
preserving approach to successfully merge SM estimates from active
and passive sensors to generate a 30 years time series and the European
Space Agency (ESA) launched the Climate Change Initiative (ESA-CCI)
program (Wagner et al., 2012), where six passive sensors (SMMR,
SSM/I, TMI, AMSR-E, WindSat, AMSR2) and two active sensors (ERS1/
2 AMI and ASCAT) were merged to produce three SM products (ESA-
CCI passive, ESA-CCI active and ESA-CCI combined). Recently, dedicated
SMmissions were launched viz., ESA's Soil Moisture and Ocean Salinity
(SMOS) mission (Kerr et al., 2001; Kerr et al., 2010) and the Soil Mois-
ture Active Passive (SMAP) mission of the National Aeronautics and
Space Administration (NASA) (Entekhabi et al., 2010). Both the satel-
lites were equipped with L-band (1.4 GHz) microwave sensors, which
is considered to be the most suitable microwave band for measuring
SM because of its ability to penetrate deeper (~5 cm) into the soil
layer than any available microwave sensor (Kerr et al., 2001).

Several validation studies were also carried out for both SMOS and
ESA-CCI combined product. ESA-CCI combined SM product was validat-
ed against in-situ measurements (International Soil Moisture Network,
ISMN) spread across the globe (Dorigo et al., 2015). The study revealed
that the performance of SMproduct had anupward trendwith time and
observed an average unbiased Root Mean Square Deviation (ubRMSD)
of 0.03 to 0.09m3 m−3. It was also able to capture the long-term trends
in SM (Dorigo et al., 2012). Validation studies using SMOS retrievals
suggested that it meets the mission requirement of an RMSD of 0.04
m3 m−3, over specific sites/regions (Al Bitar et al., 2012; Jackson et al.,
2012; Kaihotsu et al., 2013). But since, those validation studies were
site specific they cannot be extrapolated to the global scale straight-
away. To be used as a proxy to in-situ measurements, satellite SM prod-
ucts must be reliable. Thus a reliable distributed error analysis of SM
products is a key requirement.

In recent years, Triple Collocation (TC) has developed as a reliable
and powerful tool for a distributed error analysis. It estimates the
error variance (or RootMean Square Error (RMSETC)) by applying an ad-
ditive error model on three datasets (triplets) with mutually indepen-
dent errors and scaling two of the datasets relative to the third (we
call it the reference dataset) (Stoffelen, 1998; Caires and Sterl, 2003;
Gruber et al., 2016). One of the limitations of this scaled RMSETC is that
it depends on the standard deviation of the reference dataset, which
may lead to similar spatial variability in RMSETC of each triplet member.
Draper et al. (2013) used the fractional-RMSETC (fRMSETC) as the perfor-
mance metric of SM error analysis, which is obtained by reducing the
signal of reference standard deviation from RMSETC. It allows for more
flexibility in inter-comparing the error estimates from different data
triplets. Many studies have successfully used TC for estimating the ran-
dom error variance of satellite SM over different regions of the world
(Scipal et al., 2008; Miralles et al., 2010; Crow et al., 2012; Leroux et
al., 2013; Dorigo et al., 2015; Yilmaz and Crow, 2014). The main goal
of thepresent study is to perform a regional evaluation of the error char-
acteristics of the satellite SM products, viz., SMOS, ESA-CCI products
with MERRA-L dataset, over India using TC based fRMSE approach.
One of the supplementary aims of this study is to investigate the effect
of time of satellite measurement (ascending and descending overpass)
on its random error. Studies have suggested a need to evaluate the over-
passes before performing an SM analysis with them, as the overpasses
are dependent not only on RFI but also on diurnal changes in land sur-
face parameters, irrespective of sensor frequency (Saleh et al., 2006;
Jackson et al., 2010; Dente et al., 2012; Rowlandson et al., 2012;
Griesfeller et al., 2016; Peng et al., 2015). This study also includes a qual-
itative investigation and aMultiple Linear Regression (MLR) based attri-
bution study about the relationship between fRMSETC and vegetation
density and soil texture parameters (percentage of sand, clay, and silt)
(Leroux et al., 2013). The investigation is confined to India, as there is
a need for a reliable SM dataset over India to better understand the

interaction between SM and other control variables of the hydrological
cycle.

The remainder of this paper is structured as follows. The datasets
used in this study are described in Section 2 and the TC method used
for quantifying the random error in satellite SM estimates is introduced
in Section 3. The results from time-series and correlation analysis and
the TC analysis of the SM datasets are discussed in detail in Section 4. Fi-
nally, a discussion of the implications of the results, and the conclusions
drawn from this study are presented in Section 5.

2. Data description

ESA-CCI's three SM datasets viz., ESA-CCI all-passive-merged,
ESA-CCI all-active-merged, and ESA-CCI active-passive-merged and
SMOS were used in this study. A land surface model simulated SM
is also used to check the consistency of the satellite SM products,
viz., MERRA-L. The ability of these satellite products to capture the
seasonal and anomalous patterns of rainfall is also investigated
using India Meteorological Department (IMD) gridded rainfall. A
map of the probability of occurrence of Radio Frequency Interfer-
ence (RFI) as measured by SMOS averaged for 2010–2012 (Al-
yaari et al., 2014a) along with MODIS-Terra Normalized Difference
Vegetation Index (NDVI) product, averaged for a period from 2010
to 2013, and FAO's map of percentage of sand, silt and clay estimat-
ed from Land Data Assimilation System (LDAS) data (Reynolds et al.,
2000) are also used to investigate the behaviour of satellite SM
products.

2.1. ESA-CCI satellite soil moisture products

Under the aegis of the European Space Agency's Climate Change
Initiative (ESA-CCI, http://www.esa-soilmoisture-cci.org), three
multi-decadal satellite SM products are released. The objective of this
project is to use C-band microwave scatterometers (ERS-1/2
scatterometer: SCAT and METOP-A advanced scatterometer: ASCAT)
and multi-channel microwave radiometers (SMMR, SSM/I, TMI,
AMSR-E, WindSat, AMSR2), that together span over three decades, to
produce a long-term reliable time series of SM. It was produced by
merging two SM datasets, one obtained by merging all scatterometer
products (all-active) and the other from all radiometer products (all-
passive) depending on their relative sensitivity to vegetation density.
Different sensors show different ranges of SM values. Hence, the all-
active products are rescaled to a common scatterometer climatology,
viz., ASCAT and all-passive products are rescaled to a radiometer cli-
matology, viz., AMSR-E using a backward propagating Cumulative Dis-
tribution Function (CDF) matching approach before merging. Then, to
facilitate the final merging of all-active and all-passive SM, they are
again rescaled to the common climatology of Global Land Data Assim-
ilation System version-1 (GLDAS-1) before merging (Liu et al., 2011,
2012; Wagner et al., 2012). The CCI project released three SM
products:

a. A merged product created from all active datasets (CCI-ACT: 1991–
2013, version: 2.0)

b. Amerged product created from all passive datasets (CCI-PAS: 1978–
2013, version: 2.0)

c. A product created frommerged active and merged passive products
(CCI-COMBINED: 1978–2013, version: 2.1)

The SM products are in volumetric units (m3m−3), CCI-ACT is in de-
gree of saturation and quality flags are provided for snow coverage or
frozen soil and vegetation cover. These SM products have a grid resolu-
tion of 0.25°.
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