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This paper presents the comparison of three global soil moisture products (ASCAT, AMSR and SMOS) versus a
land surface model over a region representative of several Mediterranean landscapes located in the Northeast
of the Iberian Peninsula. Our approach has been for agricultural and water management applications at the re-
gional and local scale. Despite being a rather small area, we were able to observe different signal behaviours cor-
responding to major land cover classes in Mediterranean areas i.e.: dryland and irrigated crops, forests and
natural vegetation (grass-shrubs). The area also allowed assessing the impact of topography. The first result of
the study is that the results are very dependent on the normalizations used to make the data comparable, thus
their impact must be carefully analysed. In this study, we applied two different normalisation methods (called
ZV35 and ZV) and different moving average windows (1, 10 and 30 days) in order to enhance seasonal effects.
Using no smoothing window, ASCAT is the soil moisture product that correlates best with the LSM over all
cover classes, whatever the method. Using smoothing window, AMSR-E tends to outperform other soil moisture
products with the ZV method. The ZV35method is not able to identify a small heavily irrigated area. The reason
for these different results is that ZV35, tends to eliminate the monthly scale soil moisture memory and therefore
becomes more sensitive to precipitation and less sensitive to the monthly evolution of superficial soil moisture.
The comparison shows in general good agreement for all soil moisture products with the LSM on the temporal
series simulated over flat, non irrigated areas which are not close to the sea. SMOS has difficulties in areas
close to the sea and in areas with steep relief and the current version of the L2 Operational Algorithm (V5.51) de-
picts few values in forested areas. ASCAT, in its turn, shows some limitations over agricultural and natural vege-
tation where it shows an increase of soil moisture from June to October probably due to increase of penetration
depth in dry soilmoisture conditions. AMSR-E LPRMshows a clear vegetation cycle over all the land cover classes.
From all the remote sensing products, SMOS is the only one able to see irrigation and the only that does not show
clear vegetation or roughness effects. In this study, we were able to assess the impact of higher resolution soil
moisture products to map irrigated areas.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Soil moisture is a critical variable inmany physical processes related
to agriculture, hydrology, meteorology or climatology. This is especially
true in the Mediterranean context, where soil moisture is often a limit-
ing factor and thus affects the soil–atmosphere coupling and the charac-
teristics of land processes such as droughts and floods. Unfortunately,
this variable is not widely observed in situ, so we lack data on its time
evolution and spatial structure. Remote sensing and land-surface
modelling have been used to overcome such limitation. These tech-
niques are very useful because they provide comprehensive data over
large surfaces. However, both have limitations.

In the remote sensing domain, soil moisture (SM) has been a chal-
lenging variable. Microwave brightness temperature is sensitive to soil
moisture because water in soils has a large impact on soil dielectric con-
stant. The lower themicrowave frequency, the higher the relative sensi-
tivity of brightness temperature to soil moisture and at the same time
the lower the sensitive to vegetation and other perturbing factors such
as roughness and atmospheric disturbances such as cloud liquid water
or integrated water vapour. Therefore L-band microwave radiometry
is among the best ways to estimate soil moisture by remote sensing.
(Kerr, 2007).

Recent technical developments have allowed theoutgrowth of space
borne L-bandmicrowave radiometry. Thanks to that, currently two new
satellite missions, the Soil Moisture and Ocean Salinity (SMOS)
launched November 2nd, 2009 (Kerr et al., 2010) and the Soil Moisture
Active Passive (SMAP) launched January, 31st 2015 (Entekhabi et al.,
2010) provide global mapping of surface soil moisture based on
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radiometric measurements at L-band (21 cm, 1.4 GHz). Focused on sa-
linity retrieval from radiometric measurements at L-band, Aquarius
launched on June 10th 2011 and operational until June 7th, 2015, has
also shown to be able to deliver soil moisture products (Bindlish et al.,
2015). The global Water Cycle Observation Mission (WCOM) to be
launched before 2020 will provide continuity to L-band satellite radi-
ometry measurements (Shi et al., 2014).

On the other hand, algorithm development has also allowed the
emergence of global soil moisture datasets from other instruments
which were not optimized for soil moisture retrieval. The first available
global soil moisture dataset was derived from scatterometer measure-
ments in 2002 (Wagner et al., 2003). Shortly after, with the launch in
2002of the AdvancedMicrowave ScanningRadiometer— EarthObserv-
ing System (AMSR-E) on-board Aqua another global soil moisture
dataset was available. AMSR-E is amulti-channel passivemicrowave in-
strument that measures brightness temperatures at five frequencies in
the range of 6.9 to 89 GHz (Njoku et al., 2003). Several algorithms to es-
timate soil moisture from AMSE-E data exist, they commonly use the
lower available frequencies (6.9, 10.7, and 18.7 GHz) because of their
higher sensitivity to soil moisture.

Although backscatter data from active sensors have potential to
monitor soil moisture, there is currently no operational soil moisture
product from SAR active microwave. This is notably due to the difficulty
to model in time and over extended areas the impact of vegetation
cover/structure and surface roughness on the backscatter signal and
thus the need for site-specific calibration. Currently, the only active
global soil moisture dataset is derived from the backscatter measure-
ments acquired by the Advanced SCATterometer (ASCAT) at C-band.
ASCAT was designed to observe wind speed and direction over the
oceans but has been shown to be useful to measure large-scale soil
moisture (Wagner et al., 2013).

The availability of such a variety of Soil Moisture datasets has awak-
en the interest of the scientific community and caused an increment in
the number of studies comparing their strengths and limitations.

Brocca et al. (2011) compared ASCAT and AMSR-E soil moisture
products against in-situ soil moisture measurements across Europe.
They found that among the three soil moisture products derived from
AMSR-E sensor data, for most sites the highest correlation with ob-
served andmodelled datawas found using the LPRMalgorithm. Consid-
ering relative soil moisture values, the ASCAT product outperformed
AMSR-E in general. Overall, the reliability of all the satellite soilmoisture
products was found to decrease with increasing vegetation density.

In Albergel et al. (2012), in situ soil moisture data from more than
200 stations located in Africa, Australia, Europe and the United States
were used to determine the reliability of three soil moisture products,
one analysis from the ECMWF (European Centre for Medium-Range
Weather Forecasts) numerical weather prediction system (SM-DAS-2)
and two remotely sensed soil moisture products: ASCAT and SMOS.
Evaluation of the times series as well as of the anomaly values, showed
good performances of the three products to capture surface soil mois-
ture annual cycle and short term variability with similar correlation
values for ASCAT and SMOS.

Wanders et al. (2012) compared surface soil moisture from three
differentmicrowave sensors, AMSR-E, SMOS and ASCATwith a stochas-
tic, distributed unsaturated zone model (SWAP) in Spain. The averaged
correlation coefficient was 0.71, 0.68 and 0.42 for ASCAT, AMSR-E and
SMOS respectively, suggesting that temporal dynamics were best cap-
tured by AMSR-E andASCAT. Rootmean square errors for the three sen-
sors were found to be very similar (±0.05m3 m−3). The satellite
uncertainty was found spatially correlated and distinct spatial patterns
were found over Spain (Wanders et al., 2012).

In amore recent paper, Al-Yaari et al. (2014) compared the SMOS L3
Soil Moisture and AMRS-E LPRM globally with the SM-DAS-2. The re-
sults were analysed in terms of biomes and Leaf Area Index (LAI). The
results showed that both SMOS and AMSR-E captured well the spatio-
temporal variability of SM-DAS-2 for most of the biomes. In terms of

correlation values, the SMOSL3 product was found to better capture
the SM temporal dynamics in highly vegetated biomes while best re-
sults for AMSR-Ewere obtained over arid and semi-arid biomes. The ac-
curacy of the remotely sensed SM products was shown to be strongly
related to LAI. Both SM products correlated well with the SM-DAS-2
product over regions with sparse vegetation. In regions with higher
LAI, SMOSL3 showed better correlations with SM-DAS-2. This results
are consistent with the expected higher sensitivity to soil moisture
and lower to vegetation at lower frequencies.

The limitation of the two first analysis (Brocca et al., 2011; Albergel
et al., 2012) is that the comparison is done against in-situ soil moisture
and thus the representativity of the land cover analysed is reduced. Fur-
thermore, in-situ point measurements might not be representative of
the satellite spatial scales. Specifically, the soil moisture retrieved from
AMSR-E (Njoku et al., 2003) and SMOS (Kerr et al., 2010) data have a
spatial resolution of about 60 km and 40 km, respectively. Whereas
ASCAT provides soil moisture at a nominal spatial resolution of 50 km
(Wagner et al., 2013).

The use of Soil Moisture fields from models or reanalysis such as in
(Wanders et al., 2012; Al-Yaari et al., 2014) allows to extend the analysis
to different biomes and to characterise the different parameters
influencing the errors. Wanders et al. (2012) found a influence of the
distance to coast (error decreases with increasing distance) and LAI
(error increases with increasing LAI) indistinctly of the RS product. In
Al-Yaari et al. (2014) a different performance of products was found
correlated with LAI. AMSR-E was outperforming SMOS for low LAI
values, whereas SMOS was outperforming AMSR-E for high LAI values.
The former studies have increased our understanding of the remote
sensing soil moisture products, however a deeper analysis of perfor-
mances as a function of land cover and time periods is still lacking.

Land Surface Models (LSMs) simulate the physical processes at the
interface between soil, vegetation and atmosphere. These models are
run offline, forced by a gridded dataset of screen-level meteorological
variables, or online, coupled to an atmospheric model. LSMs are being
extensively used to simulate the continental water cycle at different
scales and resolutions. There are several global products based on
LSMs (Rodell et al., 2004; Decharme et al., 2012; Balsamo et al., 2012),
and there are alsomany applications at smaller scales, such as continen-
tal or national (Cosgrove, 2003;Mitchell, 2004; Chen et al., 2007; Habets
et al., 2008; Szczypta et al., 2012; Barbu et al., 2014). The advantage of
using offline LSMs is that they avoid the biases of atmospheric models
as they are forced by gridded observational datasets. The applications
of such systems are wide and range from the study of water resources,
the initialization of meteorological models, the study of the continental
water cycle and also the interpretation of satellite data, as we do in this
paper.

Onemay assume that, being LSMs physical models, the soil moisture
produced by such models is readily usable and comparable to the soil
moisture calculated by other models. However, as Koster et al. (2009)
point out, one of the limitations of the soil moisture calculated by
LSMs is that it is not a real physical variable, it is, in fact, an index of
the water content in the soil, which is not readily transferable from
model to model.

This makes the comparison with in-situ or remote sensing data dif-
ficult. This problem is caused, among other reasons, by the difference
in scale between the real point processes that the physical equations
of such models describe and the resolution at which these models are
applied. Even a resolution of 5 km, which is often considered as high
in large scale simulations (national or continental), is very low com-
pared to the scale of point processes. However, Koster et al. (2009)
also point out that if the model soil moisture data is normalized
(mean and standard deviation), then the behaviour of different models
is very close and comparable. Thus, LSMs are useful provided the SM
data they produce is adequately normalized.

The Mediterranean region is one of the most sensitive areas to cli-
mate change as demonstrated in many studies (Stocker et al., 2013).
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