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Land surface temperature (LST), derived from satellite thermal infrared (TIR) sensors, is a key variable for char-
acterization of urban heat island, modeling of surface energy balance, estimation of evapotranspiration and soil
moisture, and retrieval of air temperature. Among the satellite TIR sensors in operation, Landsat TIR sensor pro-
vides the only feasibility for long-term reconstruction of a LST dataset for environmental applications. However, a
holistic technique is not currently available to generate spatially and temporally continuous LSTs from Landsat
due to its 16-day revisit frequency, impact of atmospheric conditions and the SLC (Scan Line Corrector) -off
gap. Previous algorithms had been developed to overcome these limitations, it is still not possible to generate
LSTs at any desired date with consistent accuracy and corrections. Therefore, this study aimed to devise an algo-
rithm to reconstruct consistent, daily LSTs at Landsat spatial resolution based solely on Landsat imagery. By
selecting Beijing, China, as the study area, a total of 512 images from 1984 to 2011 were downloaded from the
USGS online portal and were consistently calibrated to surface reflectance and brightness temperature. The
cloud-, cloud shadow-, and snow-contaminated pixels were excluded according to quality flags; and a further
screening procedure based on temporal information of Landsat spectral bands 2, 4, and 5was conducted. Bright-
ness temperatures were converted to LSTs through the single channel algorithmwith input of water vapor from
the NCEP Reanalysis dataset. Field LSTs were collected from 11 weather stations in Beijing in the year of 2008,
2009, and 2010. The proposed algorithm included four modules: Data filtEr, temporaL segmentation, periodic
and trend modeling, and GAussian process (DELTA). Accuracy assessment showed that, compared with the in
situ LSTs from weather stations, satellite-derived LSTs inverted through the single channel algorithm had an av-
erage accuracy of 2.3 K. Further comparison between LSTs reconstructed from the DELTA algorithm and those
collected from weather stations in the year 2008 yielded a mean error of 3.5 K. Twelve LST maps reconstructed
from theDELTA in2000 showed that LSTs of different land covers exhibited similar seasonal patterns and reached
their maximal values in June/July. Using LST of every August 15th as an example, the SUHI (surface urban heat
island) intensity of Beijing was computed, which ranged from 3.3 K to 5.3 K from 1984 to 2011, with an increase
pattern of LST in both rural and urban areas.
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1. Introduction

Land surface temperature (LST) data derived from satellite thermal
infrared (TIR) imagery is a crucial valuable that has been utilized for
quantifying surface urban heat island (SUHI) effect (Imhoff, Zhang,
Wolfe, & Bounoua, 2010; Streutker, 2003; Tomlinson, Chapman,
Thornes, & Baker, 2012), estimating soil moisture and evapotranspira-
tion (Anderson, Allen, Morse, & Kustas, 2012; Carlson, 2007; Holzman,
Rivas, & Piccolo, 2014), modeling surface energy fluxes (Friedl, 2002;
Mallick et al., 2014), and retrieving spatially continuous air temperature

(Kloog, Nordio, Coull, & Schwartz, 2014; Shamir & Georgakakos, 2014;
Zhu, Lű, & Jia, 2013). LST from satellite TIR imagery derived through
the radiative transfer equation has aroused increasing attention since
the 1970s (McMillin, 1975). Currently, a series of satellite sensors are
in operation to deliver TIR data, such as AVHRR, Landsat TM/ETM+/
TIRS, MODIS, ASTER, and GOES. However, thermal imagery provided
by the Landsat series represents the only long-term TIR observations
at the medium scales suitable for climatological and environmental ap-
plications (Schott et al., 2012; Weng, 2009). Nevertheless, to date, gen-
erating a LST dataset at daily interval is still highly challenging, even by
applying data fusion algorithms such as STARFM (Gao, Masek,
Schwaller, & Hall, 2006) and SADFAT (Weng, Fu, & Gao, 2014). This dif-
ficulty is owing to data gaps caused by poor atmospheric conditions
(e.g., cloud contaminations), the SLC-off (ETM+ sensor) gap and the
16-day revisit frequency of Landsat.
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Recent yearswitnessed the emergence of thermal downscaling algo-
rithms that are developed to enhance the spatial and/or temporal reso-
lution of TIR imagery. Thermal downscaling refers to the scaling process
of converting remote sensing TIR data from low to high resolution and
generally falls into categories of spatial and temporal sharpening
(Weng et al., 2014). The generation of LSTs at high spatial resolution is
usually fulfilled by employing auxiliary data of high spatial resolution
through statistical or physical approaches. Kustas, Norman, Anderson,
and French (2003) exploited the relationship between vegetation
index and LST in a disaggregation procedure to derive LSTs at the agri-
cultural field scale. The algorithm was further adapted to downscale
LSTs over urban areas by using the relationship between LST and imper-
vious fraction (Essa, van der Kwast, Verbeiren, & Batelaan, 2013). The
physical method, such as the Pixel Block Intensity Modulation devel-
oped by Liu and Moore (1998), was refined to redistribute LSTs into
fine pixel scale according to different scaling factors (Nichol, 2009;
Stathopoulou & Cartalis, 2009). On the other hand, temporal sharpen-
ing, by utilizing the high temporal resolution of geostationary satellites,
such as GOES andMeteosat SecondGeneration, can produce LST images
to model diurnal temperature cycles (Inamdar, French, Hook, Vaughan,
& Luckett, 2008; Weng & Fu, 2014b; Zakšek & Oštir, 2012).

Compared to the myriad studies in the spatial or temporal thermal
sharpening, the retrieval of LSTs under cloudy conditions received
much less attention. Cloud contaminations and other poor atmospheric
conditions should be considered in generating a long-term LST dataset
(Weng & Fu, 2014a). Undetected clouds may produce LST values as
low as 230 K or generate extremely small discrepancies so that cloud
contaminated pixels may be assumed valid (Bulgin, Sembhi, Ghent,
Remedios, &Merchant, 2014). Accurate estimation of LSTs under cloudy
conditions requires both the identification of cloud-contaminatedpixels
as well as effective techniques for inference. Jin (2000) developed a
neighbor pixel (NP) technique to spatially and temporally interpolate
MODIS LSTs under cloudy conditions from neighboring pixels based
on the surface energy budget. Lu, Venus, Skidmore, Wang, and Luo
(2011) refined the NP algorithm by including temporally neighboring
pixels; their results showed that the temporal method was better than
the original spatial technique. However, these interpolation methods
are not developed specifically for the Landsat data, and thus, cannot
be directly applied to Landsat imagery.

Reconstruction of a long-term LST dataset necessitates the develop-
ment of an algorithm that can transcend the techniques of thermal
sharpening and LST interpolation under cloudy conditions to produce
LSTs of both high spatial and temporal resolutions. The emergence of
the spatial-temporal fusion algorithm - STARFM (Gao et al., 2006) that
blends different sensors to generate daily reflectance at fine spatial res-
olution - holds great potential for deriving a long-term LST dataset. Liu
and Weng (2012) generated a series of synthetic reflectance and LSTs
by using the STARFM for a time-dependent epidemiological study in
Los Angeles. Huang, Wang, Song, Fu, and Wong (2013) applied the
STARFM to predict daily LSTs by taking light reflection and refraction
amongground objects and consideringneighboring spatial effects by in-
corporating a bilateral filter. Weng et al. (2014) modified and improved
the original STARFM algorithm to generate daily LSTs at Landsat resolu-
tion by considering annual temperature cycle and urban landscape het-
erogeneity. Wu, Shen, Zhang, and Göttsche (2015) presented a spatio-
temporal integrated temperature fusion model to extend the fusion
method to fuse multiple satellite sensors, including Landsat TM/ETM
+, Terra MODIS LSTs, GOES Imager, and MSG SEVIRI. Despite all these
progresses, existing fusion algorithms are still subject to several key
limitations and cannot directly be used for generating a consistent,
long-term LST dataset. The first limitation is that LSTs under cloudy
conditions cannot be interpolated if the input images are cloud-contam-
inated, which is common for areas experiencing frequent cloud cover-
age. In addition, uncertainties remain in selecting the best imagery
pairs as the inputs for predictions. Thus, the accuracy of the data fusion
algorithms (e.g., STARFM, SADFAT) for deriving LSTs has not been fully

assessed. The third limitation is that these algorithms are not effective
in generating LSTs for areas where disturbance events, such as defores-
tation, forest degradation, desertification and other land cover and land
use changes, occur (Hilker et al., 2009; Julien & Sobrino, 2012), since the
corresponding LST variations are not stationary over time. Finally, the
inter-annual trend within LST variations cannot be captured by these
data fusion algorithms. The last issue does not pose a big challenge for
predicting LSTs over a short time period; however, themaximumannu-
al trend change may reach as high as 0.34 K (Julien & Sobrino, 2012).
Therefore, it is highly desirable to develop a new technique that can
overcome these limitations and generate consistent, long-term LSTs.

Consistent time series LSTs are of prime importance for assessing cli-
mate change of different scales (Jin & Dickinson, 2002; Jin, Dickinson, &
Zhang, 2005; Sun, Pinker, & Kafatos, 2006). Recently, GEO Global Urban
Supersite Initiative identified the time series analysis of the urban heat is-
land effect and environmental impacts over “megacities” as oneof the key
activities (Weng, 2014). These efforts explicitly refer to the utilization of
time series consistent LSTs, because of the synoptic coverage of remotely
sensed data, in characterizing thermal landscape patterns from both
inter- and intra-annual perspectives. A long-term LST dataset of high
quality can benefit analyses of impact of urbanization on thermal charac-
teristics. Therefore, the objective of this study is to develop an algorithm
that allows reconstructing historical LST measurements at daily interval
based solely on irregularly spaced Landsat imagery. Instead of blending
data among different satellite sensors, this algorithm takes advantage of
unevenly distributed time series Landsat imagery. The algorithm is then
applied toBeijing, China, to reconstruct LSTs from1984 to 2011, and to as-
sess the change in the SUHI intensity using derived LSTs.

2. Study area and data-preprocessing

2.1. Study area

The study area consists of bothmetropolitan and rural areas of Beijing.
Themetropolis, located in thenorthern tip of the roughly triangularNorth
China Plain, has 14 urban and suburban districts and 2 rural counties (Fig.
1). Beijing experiences elevation decrease from the northwest to the
southwest with the mountains in the north and northwest shielding the
city from the encroaching desert steppes. This region of China exhibits a
typical temperate continental climate generally characterized by hot
and wet summers and dry and cold winters. The study area covers
N95% of the Beijing metropolis, captured by the Landsat scene of path/
row 123/32. The global land cover mapping project (GlobalLand30)
(Chen et al., 2015) identifies eight land covers including croplands, forest,
grassland, shrubland, wetland, water, impervious surface, and barren
land in the study area for the baseline of year 2010.

Since the 1980s, Beijing underwent rapid urban growth. The urban
area of Beijing increased from 183.84 km2 in 1973 to 1209.97 km2 in
2005 with an annual expansion rate of built-up area at 32.07 km2 (Mu
et al., 2007). The population reached 21.51 million in 2014 and the av-
erage population density was 1311 persons/km (Beijing Municipal Sta-
tistical Bureau 2014). Beijing's gross domestic product (GDP) value was
merely 10 billion in 1978 and soared to almost 1980 billion in 2013,
ranking the most developed and prosperous in China (National Bureau
of Statistics of China, 2013). The city now has a post-industrial economy
dominated by tertiary sector diversified by financial services, informa-
tion technology, and scientific research, etc. The intensive urbanization
in the past decades has also caused a series of environmental issues,
such as haze pollution, extreme rainstorms, and water contamination.
It has been reported that surface temperature and the urban heat island
(UHI) intensity in Beijing increased at the rate of 0.25 °C and 0.31 °C per
decade, respectively, after 1981 (Lin & Yu, 2005). Since Beijing have
been experiencing a serious UHI, many studies have been reported to
analyze the thermal characteristics (Gong, Li, Wang, Chen, & Hu, 2006;
Quan et al., 2014; Song & Zhang, 2003) and the adverse effect of high
temperature (Ji, Liu, & Xuan, 2006; Liu et al., 2011). Therefore,
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