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Forest inventories, with a probability sampling of a target variable Y and a potentially very large number of aux-
iliary variables (X) obtained from an aerial laser scanner or photogrammetry, are faced with the issue of model
and variable selection when a model for linking Y to X is formulated. To bypass this step we propose a generic
functional regressionmodel (FRM) for use in both a design- and amodel-based framework of inference.Wedem-
onstrate applications of FRMwith inventory data from France, Germany, and Norway. The generic FRM achieved
results that were comparable to those obtained with more traditional approaches based on model and variable
selections. The proposed FRM generates interpretable regression coefficients and enables testing of practically
relevant hypotheses regarding estimated models.
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1. Introduction

An increasing number of forest inventories are now supported by re-
motely sensed auxiliary variables (X) correlatedwith the attribute(s) of
interest (Y) (Lindgren et al., 2015; Massey et al., 2014; Tomppo, 2006).
The benefits of exploitingX are in the formof an improved accuracy and
reduced uncertainty in estimates of the mean or total of Y for an area of
interest (Magnussen et al., 2015; Mandallaz, 2014; McRoberts et al.,
2006; Saarela et al., 2015). The last decades have witnessed a steady in-
crease in available choices of X and modelling approaches for linking Y
to X (Brosofske et al., 2014). When Y is a traditional tree size or density
attribute, an X that provides information about canopy heights, canopy
porosity, or canopy structure is a candidate for exploration (Brosofske et
al., 2014; Gillespie et al., 2004; Koch, 2011; McRoberts and Tomppo,
2007).

The exploration of the utility of X is context specific. In general, the
utility depends on the compatibility of the spatial resolution(s) of X
and Y, temporal synchrony, and numerous technical issues connected
to the modalities of observation and recording of data (Holmström
and Fransson, 2003; Lovell et al., 2005). The consequence is that a pur-
suit in search of the ‘best’ link function has almost become a routine ac-
tivity in forest inventories supported by auxiliary variables (Alves et al.,
2010; Hudak et al., 2012; Maltamo et al., 2009). The notion of ‘best’ is

typically formulated by one ormore statistics reflecting howwellX pre-
dicts Y (Burnham and Anderson, 2002; Chatfield, 1995; Claeskens and
Hjort, 2008). The goodness offit is commonly assessed by awithin-sam-
ple cross-validation scheme since a replication of the sample is rarely
available or the sample size is too small to afford a split into a test and
a validation set.

Although the selection of a link function – whether parametric or
non-parametric –may be conducted in compliance with best statistical
practices, it remains a fact that the model has been selected based on a
fit to a single sample.With amultivariateX and the typical small sample
fraction in a forest inventory, there is a non-trivial risk linked to the
‘curse of dimensionality’ (Marimont and Shapiro, 1979) of having se-
lected the wrongmodel due to overfitting and underestimating the un-
certainty in both model predictions and estimates of Y given X (Efron,
2014). This problem is particular relevant with data from airborne
laser scanners (ALS) and for data in the form of photogrammetric
point clouds— i.e. three dimensional point data captured and processed
to X-metrics for an area matching the area of an inventory field plot.
HereX can be any of a large number of metrics, quantiles, and summary
statistics extracted from the ensemble of point data observed within a
spatial support unit for Y. Examples where the dimension of X is close
to or even exceeds the sample size are not rare.

For inventory agencies required to produce estimators with design-
based properties (Gregoire, 1998), the practice of a statistically guided
search for a suitable model based (dependent) on evidence from the
sample, constitutes a problem because the model used for inference
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has to be external to the sample at hand (Gregoire et al., 2016; Särndal
et al., 1992, ch. 6.7). That is, the model must be identified prior to ob-
serving the sample. For both design and model based inference a sam-
ple-based model and variable selection incurs the risk of overfitting
(bias) and underreporting of uncertainty (Claeskens and Hjort, 2008).

Is there away to avoid or at least sharply reduce the inferential chal-
lenges associated with a model and variable selection based on sample
data? A solution would have to be in the form of a generic parametric
model since alternatives (semi- and non-parametric) are sample de-
pendent inasmuch as the model is data-driven, viz. adapting to the
data (Breidt and Opsomer, 2009; Breidt et al., 2007; Montanari and
Ranalli, 2005).

A generic functional regression model (FRM) (Ramsay and
Silverman, 1997) may be a way forward. The basic tenet of a FRM is
that Y can be linked to X via an integral Y ¼ ∫βtXtdt where t is a contin-
uous variable that imposes an ordering of X. The term βt is an unknown
transfer function transforming Xt to Y. In the current context t is canopy
height (unit: m) and Xt is the probability density function evaluated at a
canopy height of t. Stated as an integral over t, FRM remains an imprac-
tical theoretical construct. Unless we impose structures on Xt and βt we
will not be able to estimate a unique continuous transfer function from a
sample of n ‘discrete’ observations of Y. A discretization of t (over a finite
set of intervals) and allowing a lack of fit (error) term brings us back to a

linear model Y ¼ ∑T
t¼1βtXt þ et where Xt is the relative frequency of t,

and the regression coefficients can be estimated by least squares or any
other optimization routine that minimizes the variance of the error
terms. Depending on the context, the model may include an intercept.

It is often rational to expect a smooth trend in the discretized trans-
fer function βt across intervals of t. Without constraints, a fitted transfer
function may be wiggly, counterintuitive, or outright counter-factual.
We should expect βt to be zero where there is no relationship between
Y and Xt, and also that βt is constant across intervals where there is no
statistically significant change in the relationship. James et al. (2009) in-
troduced a new approach to FRM which applies constraints and ideas
from variable selection methods to achieve a smooth rational trend.
The constraints are applied to derivatives of βt to satisfy a priori expec-
tations on trends inβt. They call theirmethod “Functional Linear Regres-
sion That is Interpretable” (FLiRTI) to distinguish it from functional
regression based on approximations to Eigen-functions with hard-to-
interpret results (Ramsay and Silverman, 1997).

The objective of this study is to demonstrate – in the context of ALS
and photogrammetry supported forest inventories – the generic aspect
and utility of FLiRTI with its potential to eliminate the model and vari-
able selection step. Demonstration examples are from three forest in-
ventories in France, Germany, and Norway. We discuss how FLiRTI
facilitates model comparison and hypothesis testing; and we point to
other potential forest inventory applications with FLiRTI.

2. Material and methods

2.1. Våler data and sampling design

The study site, the sampling design, and data have been detailed
elsewhere (Næsset, 2002; Næsset et al., 2013). Only a brief summary
of data and sampling design is given here.

The study area is a boreal forest of 852.6 ha located in themunicipal-
ity of Våler in south-eastern Norway. The dominant tree species are
Norway spruce (Picea abies) and Scots pine (Pinus sylvestris). The forest
was stratified in 1996 to four strata based on: age class; site productiv-
ity; and tree species. The strata are: recently regenerated stands (str. 1);
young forest (str. 2); mature spruce forest (str. 3); andmature pine for-
est (str. 4). We report results from strata 2, 3, and 4. The 1999 areas (A)
were: A2 = 120.9 ha; A3 = 140.4 ha; and A4 = 195.6 ha. Stratum 1 was
excluded because field data from recently regenerated stands was ob-
tained with a protocol different from that followed in strata 2, 3, and 4.

A stratified field sampling designwith 145 circular 200m2 field plots
was conducted in 1999 and repeated in the fall and spring of 2010 and
2011. Plots were located on a 150 m × 150 m (str. 2 and 3) or a
150 m × 450 m grid (str. 4). Strata sample sizes (nj, j = 2, 3, 4) were
n2 = 55, n3 = 58, and n4= 32. Stratum sizesNj are expressed as the in-
teger value of a stratum area divided by the area of a field plot. On each
plot, the diameter at breast height (DBH)was recorded for all treeswith
a DBH ≥ 4 cm. In 81 of the plots with fewer than 15 stems, the corre-
sponding tree heights (HT) were measured with a Vertex hypsometer.
On the remaining 64 plots (with N15 stems), tree heights were mea-
sured on sample trees selected with equal probability. Overall, HT was
measured on three to 43 sample trees per plot with an average of
17.8. Above-ground biomass (AGB) of individual trees was predicted
using species-specific allometric models (Marklund, 1988). The target
attribute Y is AGB per ha in 1999 and 2010 (AGB1999 and AGB2010, unit:
Mg ha−1) and was computed from the tree-level AGB estimates and
the known plot area.

When the sample plots were visited in 2010 (11), 24 had been re-
generated in the intervening years. For these plots, field data were col-
lected in a cluster of four 20 m2 sub-plots located 5.1 m from the plot
center.

ALS data were acquired on 8–9 June 1999 with an Optech ALTM
1210 laser scanner and a flying altitude of approximately 700 m. The
pulse repetition frequency of 10 kHz and a scan frequency of 21 Hz re-
sulted in a ground point density of approximately 1.2 m−2. In the
2010 campaign, the ALS data were acquired on July 2ndwith an Optech
ALTM Gemini laser scanner operated at an altitude of approximately
900 m. The pulse repetition frequency was 100 kHz and the scan fre-
quency was 55 Hz yielding a ground point density of approximately
7.3m−2. Ground echoeswere found and classified using the progressive
Triangulated Irregular Network (TIN) densification algorithm
(Axelsson, 2000). The first-return heights (CH) were calculated
subtracting the respective TIN height from the height associated with
a first-return echo.

First return CH-values from each field plot were binned to T = 41
height classes with the first class designated to a CH between 0 m and
1.3 m, and the remaining to 40 equal width classes to an upper limit
of 31.1 m. A row vector X of length T of relative class frequencies was
computed for each plot. A corresponding census vector was obtained
for each stratum. Our choice of T is not entirely arbitrary. According to
a formula by Freedman andDiaconis (1981) T=41 is a suitable number
of bins for both the Våler and the ONF data; T may exceed the sample
size. Note, a fast computation of a census X is possible as it can be ob-
tained without a tessellation of a stratum to units with the size of a
field plot.

2.2. Office national de Forêts (ONF) data and sampling designs

Field data from forests in Aillon and the Vosges were collected in
February to April of 2011 (Aillon) and 2013 (the Vosges) as part of the
Foresee research project (http://foresee.fcba.fr). Field measurements
were performed during thewinter period from94fixed area plots locat-
ed in Aillon (49), and the Vosges (45). All but one plot had a radius of
15 m with an area of 706.9 m2. The exception was a 100 m × 100 m
plot in Aillon. Species and diameter at a reference height of 1.3 m
(DBH) above ground was, as a rule, recorded with a circumferential
tape for all live trees with a DBH ≥ 17.5 cm. For the purpose of this
study the field plots were (post) stratified by leading species (dominant
by basal area) and with plots considered as a simple random sample
(without replacement). The strata included in this study have as leading
species: beech (Fagus sylvatica L.) and fir (Abies alba L.). Total stem vol-
ume (VOL) in m3 ha−1 is the target attribute (Y) and it was computed
via local volume tariffs (Deleuze et al., 2014).

ALS data were acquired in April (the Vosges) and August (Aillon) of
2011 over a 25.5 km2 forested area in Aillon and a 1362 km2 forested
area in the Vosges. ALS data for Aillon were captured with a Riegl
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