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Snowfall comprises a significant percentage of the annualwater budget inHighMountain Asia (HMA), but snow-
water equivalent (SWE) is poorly constrained due to lack of in-situ measurements and complex terrain that
limits the efficacy ofmodeling and observations. Over thepast fewdecades, SWEhas been estimatedwith passive
microwave (PM) sensors with generally good results in wide, flat, terrain, and lower reliability in densely forest-
ed, complex, or high-elevation areas.
In this study, we use raw swath data from five satellite sensors — the Special Sensor Microwave/Imager (SSMI)
and Special Sensor Microwave Imager/Sounder (SSMIS) (1987–2015, F08, F11, F13, F17), Advanced Microwave
Scanning Radiometer — Earth Observing System (AMSR-E, 2002–2011), AMSR2 (2012–2015), and the Global
Precipitation Measurement (GPM, 2014–2015) — in order to understand the spatial and temporal structure of
native sensor, topographic, and land cover biases in SWE estimates in HMA.We develop a thorough understand-
ing of the uncertainties in our SWE estimates by examining the impacts of topographic parameters (aspect, relief,
hillslope angle, and elevation), land cover, native sensor biases, and climate parameters (precipitation, tempera-
ture, and wind speed). HMA, with its high seasonality, large topographic gradients and low relief at high
elevations provides an excellent context to examine a wide range of climatic, land-cover, and topographic
settings to better constrain SWE uncertainties and potential sensor bias.
Using a multi-parameter regression, we compare long-term SWE variability to forest fraction, maximal multi-
year snow depth, topographic parameters, and long-term average wind speed across both individual sensor
time series and amergedmulti-sensor dataset. In regions where forest cover is extensive, it is the strongest con-
trol on SWE variability. In those regions where forest density is low (b5%), maximal snow depth dominates the
uncertainty signal. In our regression across HMA, we find that forest fraction is the strongest control on SWE
variability (75.8%), followed by maximal multi-year snow depth (7.82%), 90th percentile 10-m wind speed of a
10-year December-January-February (DJF) time series (5.64%), 25th percentile DJF 10-m wind speed (5.44%),
and hillslope angle (5.24%). Elevation, relief, and terrain aspect show very low influence on SWE variability
(b1%). We find that the GPM sensor provides the most robust regression results, and can be reliably used to
estimate SWE in our study region.
While forest cover and elevation have been integrated into many SWE algorithms, wind speed and long-term
maximal snow depth have not. Our results show that wind redistribution of snow can have impacts on SWE,
especially over large, flat, areas. Using our regression results, we have developed an understanding of sensor-
specific SWE uncertainties and their spatial patterns. The uncertainty maps developed in this study provide a
first-order approximation of SWE-estimate reliability for much of HMA, and imply that high-fidelity SWE esti-
mates can be produced for many high-elevation areas.
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1. Introduction

Tracking the accumulation andmelt of snow is essential for weather
forecasting, climate modeling, and water management applications.
Estimates of snow depth (SD) and snow-water equivalent (SWE) pro-
vide additional information on the volume of water stored and released

from snowpack, which is critical for managing flood risk, irrigation
systems, and hydropower (Armstrong & Brodzik, 2002), (Tedesco &
Narvekar, 2010). Several methods have been used to estimate SD
and SWE over large areas, such as modeling based on snow covered
area (SCA) and a conversion factor (Bookhagen & Burbank, 2010),
(Immerzeel, Droogers, De Jong, & Bierkens, 2009), estimating melt vol-
ume by backward calculation of snow clearance dates (Molotch &
Margulis, 2008; Guan et al., 2013), direct measurements of SWE with
in-situ climate stations, and SWE estimation with passive microwave
(PM) data (Chang, Foster, Hall, Rango, & Hartline, 1982; Chang, Foster,
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& Hall, 1987; Clifford, 2010; Daly et al., 2012; Pulliainen, 2006; Takala,
Pulliainen, Metsämäki, & Koskinen, 2009; Takala et al., 2011; Tedesco,
Derksen, Deems, & Foster, 2015). SWE estimation with PM data is the
onlymethodwhich can estimate SWE over large areas, across all terrain
types, and provide high-temporal resolution SWE estimates based on
empirical relationships. High temporal-resolution data is imperative
for accurately guaging snowmelt and downstream runoff (Anderton,
White, & Alvera, 2002; Dozier, Painter, Rittger, & Frew, 2008; Painter
et al., 2009).

Beginning in 1978with the ScanningMultichannelMicrowave Radi-
ometer (SMMR) system, PM data has been used to measure snow pa-
rameters (Knowles, Njoku, Armstrong, & Brodzik, 2002; Chang et al.,
1982). PM data has several significant advantages over optical remote
sensing data for the collection of snow data, including cloud penetra-
tion, night-time data collection, and high sensitivity to water content
in snowpack. For many snow-covered regions, winter storms can dras-
tically limit optical data collection due to cloud cover. The Special Sensor
Microwave/Imager (SSMI) (Wentz, 2013), Special Sensor Microwave
Imager/Sounder (SSMIS) (Sun & Weng, 2008), Advanced Microwave
Scanning Radiometer — Earth Observing System (AMSR-E) (Ashcroft
& Wentz, 2013), AMSR2 (Imaoka et al., 2010), and Global Precipitation
Measurement (GPM) (GPM Science Team, 2014) sensors each collect
data at several microwave spectra, and can be used for the evaluation
of snowpack at daily or greater resolution.

Several algorithms have been developed to estimate SD and SWE
from PM data (e.g., (Chang et al., 1987; Kelly, Chang, Tsang, & Foster,
2003; Pulliainen, 2006; Kelly, 2009; Tedesco & Narvekar, 2010; Takala
et al., 2011). The majority of these algorithms exploit the difference be-
tween the brightness temperatures (Tb) at the ~18 and ~36 GHz chan-
nels. However, more recent algorithms, such as those proposed by
(Kelly, 2009), also exploit the ~10, ~23, and ~89 GHz channels available
on AMSR-E/2 and GPM, which can better resolve shallow snow condi-
tions and are less sensitive to saturation of the PM signal at the
~18 GHz band (Derksen, 2008). Improvements on SWE estimation
have also been made by tuning the original equations proposed by
(Chang et al., 1987) to specific regional conditions (Mizukami &
Perica, 2012), correcting for elevation (Savoie, Armstrong, Brodzik, &
Wang, 2009), and by introducing a forest cover correction (Foster
et al., 2005). While these methods have improved upon SWE estima-
tion, they remain unreliable in complex topography (Tedesco et al.,
2015).

Topographic relief can have strong impacts on sensed Tb values
(Mätzler & Standley, 2000;Dozier & Warren, 1982). First, the path be-
tween the ground surface and the PM sensor is determined by the
ground elevation, which can introduce a height-dependent bias
(Savoie et al., 2009). Second, complex terrain can interact constructive-
ly, where the sensed Tb values are not only the PM radiation emitted by
a flat surface, but the combination of interacting microwave signals
from hillslopes which face each other. Third, topography can shadow
parts of the satellite field of view, which preferentially samples those
hillslopes which face the satellite. Last, land surface slope changes the
relative look angle of the satellite, which can preferentially enhance or
degrade the microwave signal from different areas of the same field of
view, and modify the relative signal strengths of horizontally and verti-
cally polarized Tb data (Dozier & Warren, 1982). In addition to topo-
graphic impacts, forest cover can significantly reduce the Tb difference
term used by SWE algorithms (Chang, Foster, & Hall, 1996; Foster
et al., 2005). This is due to the attenuation of microwave signals as
they pass through dense vegetation, which can reduce SWE estimates
by as much as 50% (Brown, 1996; Vander Jagt et al., 2013).

While studies have examined the reliability of SWE data from
several satellite platforms (i.e. Imaoka et al., 2010; Armstrong &
Brodzik, 2001; Armstrong & Brodzik, 2002; Brown, 1996; Chang et al.,
1996; Dai, Che, & Ding, 2015; Foster et al., 2005; Langlois et al.,
2011;Mizukami & Perica, 2012; Sun & Weng, 2008; Tedesco &
Narvekar, 2010; Wang & Tedesco, 2007; Savoie et al., 2009; Dong,

Walker, &Houser, 2005), few large-scale analyses of SWEhave been un-
dertaken in High Mountain Asia (HMA), and none have examined the
impacts of long-term maximal snow depth and wind redistribution on
SWE variability.

As HMA lacks an extensive and reliable ground-weather station net-
work, particularly at elevations above 3000 m, we do not rely on in-situ
data to compare our satellite-based SWE estimates to those of any
snow-monitoring stations. Instead, we focus on understanding the util-
ity and limitations of satellite-based PM data – especially those factors
which may reduce the reliability of SWE estimates – by examining a
multi-frequency time series of PM data across a range of topographic,
land cover, and climate settings.

2. Materials and methods

In this study we use a multi-instrument time series of SSMI, SSMIS,
AMSR-E, AMSR2, and GPM PM data from 2000–2015 in combination
with topographic, land-cover, and climatic data.

2.1. Study area

Our study area encompasses a wide range of climatic seasonality, el-
evation, topographic relief and hillslope angles. It includes not only high
relief and high complexity areas typical of many mountain ranges, but
also large areas of low relief at high elevation (i.e., the Tibetan Plateau).
Low but variable forest density across the study region, in combination
with the range of topographic characteristics, allows us to examine
a range of factors which impact SWE estimation with PM data. We ran-
domly generated 5000 pointswithin our study area, and removed those
close tomajor bodies ofwater. From this subset,we choose 2500 sample
points which cover a wide range of elevation, relief, slope, and aspect
settings (Fig. 1).

2.2. Topographic, land cover, and climate data

The 2000 Shuttle Radar TopographyMission V4.1 (SRTM) Digital El-
evationModel (DEM) (~90-m, void-filled) was leveraged to provide el-
evation, hillslope angle, aspect, and 5-km radius relief (Jarvis, Reuter,
Nelson, Guevara, et al., 2008) (Fig. 1). We then apply an averaging filter
over a 20-km radius to the hillslope, elevation, and relief surfaces to
minimize spatial-resolution differences and PM location uncertainties
when comparing between 90-m and ~25-km resolution data (Fig. 2A,
B).

High Asia Reanalysis (HAR) (2000–2014) provides 10-km resolution
land-surface temperature at 2-m heights (product t2) at both daily and
3-hourly temporal resolution over 98% of the study area for the period
2000 to 2014 (Maussion et al., 2014). For those points which fall outside
of the 10-km HAR domain, we use the 30-km product instead. We use
the hourly product to create average daily daytime and nighttime tem-
peratures, as well as bi-daily deviation values from the long-term aver-
agemonthly temperatures. In addition to theHAR temperature product,
we leverage the 10-m surface wind speed dataset (product ws10) to as-
sess the impact of high-wind areas on SWEvariability (Fig. 2C).We treat
the HAR wind product as a ‘static’ dataset in our analysis by using long-
term statistics derived from the 14-year time series of wind speed data,
such as the long-term December-January-February (DJF) median, 25th
and 90th percentile wind speeds at each pixel. By using percentiles as
proxies for long-term trends in the climate data, we canmore accurately
compare trends in wind speed with trends in SWE and SWE variability
over the whole time series instead of on a daily or hourly basis.

TRMM product 3B42 V7 (1997–2014) provides daily rainfall esti-
mates at 0.25° × 0.25° resolution (Huffman et al., 2007). This data is
used to isolate precipitation-free days and multi-day periods from the
larger time series, with a sensed precipitation threshold of 0.1 mm/h.

Fractional forest cover is derived fromMODISMOD12Q1 yearly data
(2001−2012), following the Boston University IGBP classification
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